Enter a problem...
Basic Math Examples
Step 1
Step 1.1
Multiply by .
Step 1.2
Multiply by .
Step 1.3
To write as a fraction with a common denominator, multiply by .
Step 1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 1.4.1
Multiply by .
Step 1.4.2
Multiply by .
Step 1.5
Combine the numerators over the common denominator.
Step 1.6
Add and .
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The prime factors for are .
Step 2.3.1
has factors of and .
Step 2.3.2
has factors of and .
Step 2.4
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.5
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.6
Multiply .
Step 2.6.1
Multiply by .
Step 2.6.2
Multiply by .
Step 2.7
The factor for is itself.
occurs time.
Step 2.8
The factor for is itself.
occurs time.
Step 2.9
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 2.10
The Least Common Multiple of some numbers is the smallest number that the numbers are factors of.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of .
Step 3.2.1.1.1
Factor out of .
Step 3.2.1.1.2
Cancel the common factor.
Step 3.2.1.1.3
Rewrite the expression.
Step 3.2.1.2
Expand using the FOIL Method.
Step 3.2.1.2.1
Apply the distributive property.
Step 3.2.1.2.2
Apply the distributive property.
Step 3.2.1.2.3
Apply the distributive property.
Step 3.2.1.3
Simplify and combine like terms.
Step 3.2.1.3.1
Simplify each term.
Step 3.2.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.2.1.3.1.2
Multiply by by adding the exponents.
Step 3.2.1.3.1.2.1
Move .
Step 3.2.1.3.1.2.2
Multiply by .
Step 3.2.1.3.1.3
Multiply by .
Step 3.2.1.3.1.4
Multiply by .
Step 3.2.1.3.1.5
Multiply by .
Step 3.2.1.3.1.6
Multiply by .
Step 3.2.1.3.2
Subtract from .
Step 3.2.1.4
Apply the distributive property.
Step 3.2.1.5
Simplify.
Step 3.2.1.5.1
Multiply by .
Step 3.2.1.5.2
Multiply by .
Step 3.2.1.5.3
Multiply by .
Step 3.2.1.6
Rewrite using the commutative property of multiplication.
Step 3.2.1.7
Combine and .
Step 3.2.1.8
Cancel the common factor of .
Step 3.2.1.8.1
Cancel the common factor.
Step 3.2.1.8.2
Rewrite the expression.
Step 3.2.2
Add and .
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify terms.
Step 3.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.1.2
Combine and .
Step 3.3.1.3
Cancel the common factor of .
Step 3.3.1.3.1
Factor out of .
Step 3.3.1.3.2
Cancel the common factor.
Step 3.3.1.3.3
Rewrite the expression.
Step 3.3.1.4
Apply the distributive property.
Step 3.3.1.5
Simplify the expression.
Step 3.3.1.5.1
Rewrite using the commutative property of multiplication.
Step 3.3.1.5.2
Multiply by .
Step 3.3.2
Simplify each term.
Step 3.3.2.1
Multiply by by adding the exponents.
Step 3.3.2.1.1
Move .
Step 3.3.2.1.2
Multiply by .
Step 3.3.2.2
Multiply by .
Step 4
Step 4.1
Move all terms containing to the left side of the equation.
Step 4.1.1
Subtract from both sides of the equation.
Step 4.1.2
Add to both sides of the equation.
Step 4.1.3
Subtract from .
Step 4.1.4
Add and .
Step 4.2
Factor the left side of the equation.
Step 4.2.1
Factor out of .
Step 4.2.1.1
Factor out of .
Step 4.2.1.2
Factor out of .
Step 4.2.1.3
Factor out of .
Step 4.2.1.4
Factor out of .
Step 4.2.1.5
Factor out of .
Step 4.2.2
Factor.
Step 4.2.2.1
Factor by grouping.
Step 4.2.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.2.2.1.1.1
Factor out of .
Step 4.2.2.1.1.2
Rewrite as plus
Step 4.2.2.1.1.3
Apply the distributive property.
Step 4.2.2.1.1.4
Multiply by .
Step 4.2.2.1.2
Factor out the greatest common factor from each group.
Step 4.2.2.1.2.1
Group the first two terms and the last two terms.
Step 4.2.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.2.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.2.2.2
Remove unnecessary parentheses.
Step 4.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.4
Set equal to and solve for .
Step 4.4.1
Set equal to .
Step 4.4.2
Solve for .
Step 4.4.2.1
Subtract from both sides of the equation.
Step 4.4.2.2
Divide each term in by and simplify.
Step 4.4.2.2.1
Divide each term in by .
Step 4.4.2.2.2
Simplify the left side.
Step 4.4.2.2.2.1
Cancel the common factor of .
Step 4.4.2.2.2.1.1
Cancel the common factor.
Step 4.4.2.2.2.1.2
Divide by .
Step 4.4.2.2.3
Simplify the right side.
Step 4.4.2.2.3.1
Move the negative in front of the fraction.
Step 4.5
Set equal to and solve for .
Step 4.5.1
Set equal to .
Step 4.5.2
Add to both sides of the equation.
Step 4.6
The final solution is all the values that make true.
Step 5
Exclude the solutions that do not make true.