Enter a problem...
Basic Math Examples
18000=10000(1+0.044)4n
Step 1
Rewrite the equation as 10000(1+0.044)4n=18000.
10000(1+0.044)4n=18000
Step 2
Step 2.1
Divide 0.04 by 4.
10000(1+0.01)4n=18000
Step 2.2
Add 1 and 0.01.
10000⋅1.014n=18000
10000⋅1.014n=18000
Step 3
Step 3.1
Divide each term in 10000⋅1.014n=18000 by 10000.
10000⋅1.014n10000=1800010000
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of 10000.
Step 3.2.1.1
Cancel the common factor.
10000⋅1.014n10000=1800010000
Step 3.2.1.2
Divide 1.014n by 1.
1.014n=1800010000
1.014n=1800010000
1.014n=1800010000
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of 18000 and 10000.
Step 3.3.1.1
Factor 2000 out of 18000.
1.014n=2000(9)10000
Step 3.3.1.2
Cancel the common factors.
Step 3.3.1.2.1
Factor 2000 out of 10000.
1.014n=2000⋅92000⋅5
Step 3.3.1.2.2
Cancel the common factor.
1.014n=2000⋅92000⋅5
Step 3.3.1.2.3
Rewrite the expression.
1.014n=95
1.014n=95
1.014n=95
1.014n=95
1.014n=95
Step 4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(1.014n)=ln(95)
Step 5
Expand ln(1.014n) by moving 4n outside the logarithm.
4nln(1.01)=ln(95)
Step 6
Step 6.1
Divide each term in 4nln(1.01)=ln(95) by 4ln(1.01).
4nln(1.01)4ln(1.01)=ln(95)4ln(1.01)
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of 4.
Step 6.2.1.1
Cancel the common factor.
4nln(1.01)4ln(1.01)=ln(95)4ln(1.01)
Step 6.2.1.2
Rewrite the expression.
nln(1.01)ln(1.01)=ln(95)4ln(1.01)
nln(1.01)ln(1.01)=ln(95)4ln(1.01)
Step 6.2.2
Cancel the common factor of ln(1.01).
Step 6.2.2.1
Cancel the common factor.
nln(1.01)ln(1.01)=ln(95)4ln(1.01)
Step 6.2.2.2
Divide n by 1.
n=ln(95)4ln(1.01)
n=ln(95)4ln(1.01)
n=ln(95)4ln(1.01)
n=ln(95)4ln(1.01)
Step 7
The result can be shown in multiple forms.
Exact Form:
n=ln(95)4ln(1.01)
Decimal Form:
n=14.76801810…