Basic Math Examples

Solve for n 11000=600((1-(1.015)^n)/0.015)
11000=600(1-(1.015)n0.015)
Step 1
Rewrite the equation as 600(1-1.015n0.015)=11000.
600(1-1.015n0.015)=11000
Step 2
Simplify 600(1-1.015n0.015).
Tap for more steps...
Step 2.1
Cancel the common factor of 0.015.
Tap for more steps...
Step 2.1.1
Factor 0.015 out of 600.
0.015(40000)1-1.015n0.015=11000
Step 2.1.2
Cancel the common factor.
0.015400001-1.015n0.015=11000
Step 2.1.3
Rewrite the expression.
40000(1-1.015n)=11000
40000(1-1.015n)=11000
Step 2.2
Apply the distributive property.
400001+40000(-1.015n)=11000
Step 2.3
Multiply.
Tap for more steps...
Step 2.3.1
Multiply 40000 by 1.
40000+40000(-1.015n)=11000
Step 2.3.2
Multiply -1 by 40000.
40000-400001.015n=11000
40000-400001.015n=11000
40000-400001.015n=11000
Step 3
Move all terms not containing n to the right side of the equation.
Tap for more steps...
Step 3.1
Subtract 40000 from both sides of the equation.
-400001.015n=11000-40000
Step 3.2
Subtract 40000 from 11000.
-400001.015n=-29000
-400001.015n=-29000
Step 4
Divide each term in -400001.015n=-29000 by -40000 and simplify.
Tap for more steps...
Step 4.1
Divide each term in -400001.015n=-29000 by -40000.
-400001.015n-40000=-29000-40000
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of -40000.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
-400001.015n-40000=-29000-40000
Step 4.2.1.2
Divide 1.015n by 1.
1.015n=-29000-40000
1.015n=-29000-40000
1.015n=-29000-40000
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Cancel the common factor of -29000 and -40000.
Tap for more steps...
Step 4.3.1.1
Factor -1000 out of -29000.
1.015n=-1000(29)-40000
Step 4.3.1.2
Cancel the common factors.
Tap for more steps...
Step 4.3.1.2.1
Factor -1000 out of -40000.
1.015n=-100029-100040
Step 4.3.1.2.2
Cancel the common factor.
1.015n=-100029-100040
Step 4.3.1.2.3
Rewrite the expression.
1.015n=2940
1.015n=2940
1.015n=2940
1.015n=2940
1.015n=2940
Step 5
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(1.015n)=ln(2940)
Step 6
Expand ln(1.015n) by moving n outside the logarithm.
nln(1.015)=ln(2940)
Step 7
Divide each term in nln(1.015)=ln(2940) by ln(1.015) and simplify.
Tap for more steps...
Step 7.1
Divide each term in nln(1.015)=ln(2940) by ln(1.015).
nln(1.015)ln(1.015)=ln(2940)ln(1.015)
Step 7.2
Simplify the left side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of ln(1.015).
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
nln(1.015)ln(1.015)=ln(2940)ln(1.015)
Step 7.2.1.2
Divide n by 1.
n=ln(2940)ln(1.015)
n=ln(2940)ln(1.015)
n=ln(2940)ln(1.015)
n=ln(2940)ln(1.015)
Step 8
The result can be shown in multiple forms.
Exact Form:
n=ln(2940)ln(1.015)
Decimal Form:
n=-21.59930109
 [x2  12  π  xdx ]