Basic Math Examples

Solve for k 4/5k+7/10=13/15k-3/5
45k+710=1315k-3545k+710=1315k35
Step 1
Combine 4545 and kk.
4k5+710=1315k-354k5+710=1315k35
Step 2
Combine 13151315 and kk.
4k5+710=13k15-354k5+710=13k1535
Step 3
Move all terms containing kk to the left side of the equation.
Tap for more steps...
Step 3.1
Subtract 13k1513k15 from both sides of the equation.
4k5+710-13k15=-354k5+71013k15=35
Step 3.2
To write 4k54k5 as a fraction with a common denominator, multiply by 3333.
4k533-13k15+710=-354k53313k15+710=35
Step 3.3
Write each expression with a common denominator of 1515, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 3.3.1
Multiply 4k54k5 by 3333.
4k353-13k15+710=-354k35313k15+710=35
Step 3.3.2
Multiply 55 by 33.
4k315-13k15+710=-354k31513k15+710=35
4k315-13k15+710=-354k31513k15+710=35
Step 3.4
Combine the numerators over the common denominator.
4k3-13k15+710=-354k313k15+710=35
Step 3.5
Simplify each term.
Tap for more steps...
Step 3.5.1
Simplify the numerator.
Tap for more steps...
Step 3.5.1.1
Factor kk out of 4k3-13k4k313k.
Tap for more steps...
Step 3.5.1.1.1
Factor kk out of 4k34k3.
k(43)-13k15+710=-35k(43)13k15+710=35
Step 3.5.1.1.2
Factor kk out of -13k13k.
k(43)+k-1315+710=-35k(43)+k1315+710=35
Step 3.5.1.1.3
Factor kk out of k(43)+k-13k(43)+k13.
k(43-13)15+710=-35k(4313)15+710=35
k(43-13)15+710=-35k(4313)15+710=35
Step 3.5.1.2
Multiply 44 by 33.
k(12-13)15+710=-35k(1213)15+710=35
Step 3.5.1.3
Subtract 1313 from 1212.
k-115+710=-35k115+710=35
k-115+710=-35k115+710=35
Step 3.5.2
Move -11 to the left of kk.
-1k15+710=-351k15+710=35
Step 3.5.3
Move the negative in front of the fraction.
-k15+710=-35k15+710=35
-k15+710=-35k15+710=35
-k15+710=-35k15+710=35
Step 4
Move all terms not containing kk to the right side of the equation.
Tap for more steps...
Step 4.1
Subtract 710710 from both sides of the equation.
-k15=-35-710k15=35710
Step 4.2
To write -3535 as a fraction with a common denominator, multiply by 2222.
-k15=-3522-710k15=3522710
Step 4.3
Write each expression with a common denominator of 1010, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 4.3.1
Multiply 3535 by 2222.
-k15=-3252-710k15=3252710
Step 4.3.2
Multiply 55 by 22.
-k15=-3210-710k15=3210710
-k15=-3210-710k15=3210710
Step 4.4
Combine the numerators over the common denominator.
-k15=-32-710k15=32710
Step 4.5
Simplify the numerator.
Tap for more steps...
Step 4.5.1
Multiply -33 by 22.
-k15=-6-710k15=6710
Step 4.5.2
Subtract 77 from -66.
-k15=-1310k15=1310
-k15=-1310k15=1310
Step 4.6
Move the negative in front of the fraction.
-k15=-1310k15=1310
-k15=-1310k15=1310
Step 5
Multiply both sides of the equation by -1515.
-15(-k15)=-15(-1310)15(k15)=15(1310)
Step 6
Simplify both sides of the equation.
Tap for more steps...
Step 6.1
Simplify the left side.
Tap for more steps...
Step 6.1.1
Simplify -15(-k15)15(k15).
Tap for more steps...
Step 6.1.1.1
Cancel the common factor of 1515.
Tap for more steps...
Step 6.1.1.1.1
Move the leading negative in -k15 into the numerator.
-15-k15=-15(-1310)
Step 6.1.1.1.2
Factor 15 out of -15.
15(-1)-k15=-15(-1310)
Step 6.1.1.1.3
Cancel the common factor.
15-1-k15=-15(-1310)
Step 6.1.1.1.4
Rewrite the expression.
--k=-15(-1310)
--k=-15(-1310)
Step 6.1.1.2
Multiply.
Tap for more steps...
Step 6.1.1.2.1
Multiply -1 by -1.
1k=-15(-1310)
Step 6.1.1.2.2
Multiply k by 1.
k=-15(-1310)
k=-15(-1310)
k=-15(-1310)
k=-15(-1310)
Step 6.2
Simplify the right side.
Tap for more steps...
Step 6.2.1
Simplify -15(-1310).
Tap for more steps...
Step 6.2.1.1
Cancel the common factor of 5.
Tap for more steps...
Step 6.2.1.1.1
Move the leading negative in -1310 into the numerator.
k=-15(-1310)
Step 6.2.1.1.2
Factor 5 out of -15.
k=5(-3)-1310
Step 6.2.1.1.3
Factor 5 out of 10.
k=5-3-1352
Step 6.2.1.1.4
Cancel the common factor.
k=5-3-1352
Step 6.2.1.1.5
Rewrite the expression.
k=-3(-132)
k=-3(-132)
Step 6.2.1.2
Combine -3 and -132.
k=-3-132
Step 6.2.1.3
Multiply -3 by -13.
k=392
k=392
k=392
k=392
Step 7
The result can be shown in multiple forms.
Exact Form:
k=392
Decimal Form:
k=19.5
Mixed Number Form:
k=1912
 [x2  12  π  xdx ]