Enter a problem...
Basic Math Examples
45k+710=1315k-3545k+710=1315k−35
Step 1
Combine 4545 and kk.
4k5+710=1315k-354k5+710=1315k−35
Step 2
Combine 13151315 and kk.
4k5+710=13k15-354k5+710=13k15−35
Step 3
Step 3.1
Subtract 13k1513k15 from both sides of the equation.
4k5+710-13k15=-354k5+710−13k15=−35
Step 3.2
To write 4k54k5 as a fraction with a common denominator, multiply by 3333.
4k5⋅33-13k15+710=-354k5⋅33−13k15+710=−35
Step 3.3
Write each expression with a common denominator of 1515, by multiplying each by an appropriate factor of 11.
Step 3.3.1
Multiply 4k54k5 by 3333.
4k⋅35⋅3-13k15+710=-354k⋅35⋅3−13k15+710=−35
Step 3.3.2
Multiply 55 by 33.
4k⋅315-13k15+710=-354k⋅315−13k15+710=−35
4k⋅315-13k15+710=-354k⋅315−13k15+710=−35
Step 3.4
Combine the numerators over the common denominator.
4k⋅3-13k15+710=-354k⋅3−13k15+710=−35
Step 3.5
Simplify each term.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Factor kk out of 4k⋅3-13k4k⋅3−13k.
Step 3.5.1.1.1
Factor kk out of 4k⋅34k⋅3.
k(4⋅3)-13k15+710=-35k(4⋅3)−13k15+710=−35
Step 3.5.1.1.2
Factor kk out of -13k−13k.
k(4⋅3)+k⋅-1315+710=-35k(4⋅3)+k⋅−1315+710=−35
Step 3.5.1.1.3
Factor kk out of k(4⋅3)+k⋅-13k(4⋅3)+k⋅−13.
k(4⋅3-13)15+710=-35k(4⋅3−13)15+710=−35
k(4⋅3-13)15+710=-35k(4⋅3−13)15+710=−35
Step 3.5.1.2
Multiply 44 by 33.
k(12-13)15+710=-35k(12−13)15+710=−35
Step 3.5.1.3
Subtract 1313 from 1212.
k⋅-115+710=-35k⋅−115+710=−35
k⋅-115+710=-35k⋅−115+710=−35
Step 3.5.2
Move -1−1 to the left of kk.
-1⋅k15+710=-35−1⋅k15+710=−35
Step 3.5.3
Move the negative in front of the fraction.
-k15+710=-35−k15+710=−35
-k15+710=-35−k15+710=−35
-k15+710=-35−k15+710=−35
Step 4
Step 4.1
Subtract 710710 from both sides of the equation.
-k15=-35-710−k15=−35−710
Step 4.2
To write -35−35 as a fraction with a common denominator, multiply by 2222.
-k15=-35⋅22-710−k15=−35⋅22−710
Step 4.3
Write each expression with a common denominator of 1010, by multiplying each by an appropriate factor of 11.
Step 4.3.1
Multiply 3535 by 2222.
-k15=-3⋅25⋅2-710−k15=−3⋅25⋅2−710
Step 4.3.2
Multiply 55 by 22.
-k15=-3⋅210-710−k15=−3⋅210−710
-k15=-3⋅210-710−k15=−3⋅210−710
Step 4.4
Combine the numerators over the common denominator.
-k15=-3⋅2-710−k15=−3⋅2−710
Step 4.5
Simplify the numerator.
Step 4.5.1
Multiply -3−3 by 22.
-k15=-6-710−k15=−6−710
Step 4.5.2
Subtract 77 from -6−6.
-k15=-1310−k15=−1310
-k15=-1310−k15=−1310
Step 4.6
Move the negative in front of the fraction.
-k15=-1310−k15=−1310
-k15=-1310−k15=−1310
Step 5
Multiply both sides of the equation by -15−15.
-15(-k15)=-15(-1310)−15(−k15)=−15(−1310)
Step 6
Step 6.1
Simplify the left side.
Step 6.1.1
Simplify -15(-k15)−15(−k15).
Step 6.1.1.1
Cancel the common factor of 1515.
Step 6.1.1.1.1
Move the leading negative in -k15 into the numerator.
-15-k15=-15(-1310)
Step 6.1.1.1.2
Factor 15 out of -15.
15(-1)-k15=-15(-1310)
Step 6.1.1.1.3
Cancel the common factor.
15⋅-1-k15=-15(-1310)
Step 6.1.1.1.4
Rewrite the expression.
--k=-15(-1310)
--k=-15(-1310)
Step 6.1.1.2
Multiply.
Step 6.1.1.2.1
Multiply -1 by -1.
1k=-15(-1310)
Step 6.1.1.2.2
Multiply k by 1.
k=-15(-1310)
k=-15(-1310)
k=-15(-1310)
k=-15(-1310)
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify -15(-1310).
Step 6.2.1.1
Cancel the common factor of 5.
Step 6.2.1.1.1
Move the leading negative in -1310 into the numerator.
k=-15(-1310)
Step 6.2.1.1.2
Factor 5 out of -15.
k=5(-3)-1310
Step 6.2.1.1.3
Factor 5 out of 10.
k=5⋅-3-135⋅2
Step 6.2.1.1.4
Cancel the common factor.
k=5⋅-3-135⋅2
Step 6.2.1.1.5
Rewrite the expression.
k=-3(-132)
k=-3(-132)
Step 6.2.1.2
Combine -3 and -132.
k=-3⋅-132
Step 6.2.1.3
Multiply -3 by -13.
k=392
k=392
k=392
k=392
Step 7
The result can be shown in multiple forms.
Exact Form:
k=392
Decimal Form:
k=19.5
Mixed Number Form:
k=1912