Basic Math Examples

Solve for m 241÷4000=241÷(2^m)*5^n
241÷4000=241÷2m5n
Step 1
Rewrite the equation as 241÷2m5n=241÷4000.
241÷2m5n=241÷4000
Step 2
Simplify 241÷2m5n.
Tap for more steps...
Step 2.1
Rewrite the division as a fraction.
2412m5n=241÷4000
Step 2.2
Combine 2412m and 5n.
2415n2m=241÷4000
2415n2m=241÷4000
Step 3
Rewrite the division as a fraction.
2415n2m=2414000
Step 4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2415n2m)=ln(2414000)
Step 5
Expand the left side.
Tap for more steps...
Step 5.1
Rewrite ln(2415n2m) as ln(2415n)-ln(2m).
ln(2415n)-ln(2m)=ln(2414000)
Step 5.2
Expand ln(2m) by moving m outside the logarithm.
ln(2415n)-(mln(2))=ln(2414000)
Step 5.3
Remove parentheses.
ln(2415n)-mln(2)=ln(2414000)
Step 5.4
Rewrite ln(2415n) as ln(241)+ln(5n).
ln(241)+ln(5n)-mln(2)=ln(2414000)
Step 5.5
Expand ln(5n) by moving n outside the logarithm.
ln(241)+nln(5)-mln(2)=ln(2414000)
ln(241)+nln(5)-mln(2)=ln(2414000)
Step 6
Simplify the left side.
Tap for more steps...
Step 6.1
Move ln(241).
nln(5)-mln(2)+ln(241)=ln(2414000)
Step 6.2
Reorder nln(5) and -mln(2).
-mln(2)+nln(5)+ln(241)=ln(2414000)
-mln(2)+nln(5)+ln(241)=ln(2414000)
Step 7
Move all the terms containing a logarithm to the left side of the equation.
-mln(2)+nln(5)+ln(241)-ln(2414000)=0
Step 8
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
-mln(2)+nln(5)+ln(2412414000)=0
Step 9
Simplify each term.
Tap for more steps...
Step 9.1
Multiply the numerator by the reciprocal of the denominator.
-mln(2)+nln(5)+ln(241(4000241))=0
Step 9.2
Cancel the common factor of 241.
Tap for more steps...
Step 9.2.1
Cancel the common factor.
-mln(2)+nln(5)+ln(241(4000241))=0
Step 9.2.2
Rewrite the expression.
-mln(2)+nln(5)+ln(4000)=0
-mln(2)+nln(5)+ln(4000)=0
-mln(2)+nln(5)+ln(4000)=0
Step 10
Move all terms not containing m to the right side of the equation.
Tap for more steps...
Step 10.1
Subtract nln(5) from both sides of the equation.
-mln(2)+ln(4000)=-nln(5)
Step 10.2
Subtract ln(4000) from both sides of the equation.
-mln(2)=-nln(5)-ln(4000)
-mln(2)=-nln(5)-ln(4000)
Step 11
Divide each term in -mln(2)=-nln(5)-ln(4000) by -ln(2) and simplify.
Tap for more steps...
Step 11.1
Divide each term in -mln(2)=-nln(5)-ln(4000) by -ln(2).
-mln(2)-ln(2)=-nln(5)-ln(2)+-ln(4000)-ln(2)
Step 11.2
Simplify the left side.
Tap for more steps...
Step 11.2.1
Dividing two negative values results in a positive value.
mln(2)ln(2)=-nln(5)-ln(2)+-ln(4000)-ln(2)
Step 11.2.2
Cancel the common factor of ln(2).
Tap for more steps...
Step 11.2.2.1
Cancel the common factor.
mln(2)ln(2)=-nln(5)-ln(2)+-ln(4000)-ln(2)
Step 11.2.2.2
Divide m by 1.
m=-nln(5)-ln(2)+-ln(4000)-ln(2)
m=-nln(5)-ln(2)+-ln(4000)-ln(2)
m=-nln(5)-ln(2)+-ln(4000)-ln(2)
Step 11.3
Simplify the right side.
Tap for more steps...
Step 11.3.1
Simplify each term.
Tap for more steps...
Step 11.3.1.1
Dividing two negative values results in a positive value.
m=nln(5)ln(2)+-ln(4000)-ln(2)
Step 11.3.1.2
Dividing two negative values results in a positive value.
m=nln(5)ln(2)+ln(4000)ln(2)
m=nln(5)ln(2)+ln(4000)ln(2)
m=nln(5)ln(2)+ln(4000)ln(2)
m=nln(5)ln(2)+ln(4000)ln(2)
 [x2  12  π  xdx ]