Enter a problem...
Basic Math Examples
log(m2n5)=21log(m)-5log(n)log(m2n5)=21log(m)−5log(n)
Step 1
Step 1.1
Simplify 21log(m)-5log(n).
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Simplify 21log(m) by moving 21 inside the logarithm.
log(m2n5)=log(m21)-5log(n)
Step 1.1.1.2
Simplify -5log(n) by moving 5 inside the logarithm.
log(m2n5)=log(m21)-log(n5)
log(m2n5)=log(m21)-log(n5)
Step 1.1.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
log(m2n5)=log(m21n5)
log(m2n5)=log(m21n5)
log(m2n5)=log(m21n5)
Step 2
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
m2n5=m21n5
Step 3
Step 3.1
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
m2=m21
Step 3.2
Subtract m21 from both sides of the equation.
m2-m21=0
Step 3.3
Factor m2 out of m2-m21.
Step 3.3.1
Multiply by 1.
m2⋅1-m21=0
Step 3.3.2
Factor m2 out of -m21.
m2⋅1+m2(-m19)=0
Step 3.3.3
Factor m2 out of m2⋅1+m2(-m19).
m2(1-m19)=0
m2(1-m19)=0
Step 3.4
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
m2=0
1-m19=0
Step 3.5
Set m2 equal to 0 and solve for m.
Step 3.5.1
Set m2 equal to 0.
m2=0
Step 3.5.2
Solve m2=0 for m.
Step 3.5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
m=±√0
Step 3.5.2.2
Simplify ±√0.
Step 3.5.2.2.1
Rewrite 0 as 02.
m=±√02
Step 3.5.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
m=±0
Step 3.5.2.2.3
Plus or minus 0 is 0.
m=0
m=0
m=0
m=0
Step 3.6
Set 1-m19 equal to 0 and solve for m.
Step 3.6.1
Set 1-m19 equal to 0.
1-m19=0
Step 3.6.2
Solve 1-m19=0 for m.
Step 3.6.2.1
Subtract 1 from both sides of the equation.
-m19=-1
Step 3.6.2.2
Divide each term in -m19=-1 by -1 and simplify.
Step 3.6.2.2.1
Divide each term in -m19=-1 by -1.
-m19-1=-1-1
Step 3.6.2.2.2
Simplify the left side.
Step 3.6.2.2.2.1
Dividing two negative values results in a positive value.
m191=-1-1
Step 3.6.2.2.2.2
Divide m19 by 1.
m19=-1-1
m19=-1-1
Step 3.6.2.2.3
Simplify the right side.
Step 3.6.2.2.3.1
Divide -1 by -1.
m19=1
m19=1
m19=1
Step 3.6.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
m=19√1
Step 3.6.2.4
Any root of 1 is 1.
m=1
m=1
m=1
Step 3.7
The final solution is all the values that make m2(1-m19)=0 true.
m=0,1
m=0,1