Basic Math Examples

Solve for n (1/8)^(3-n)*4=4
(18)3-n4=4(18)3n4=4
Step 1
Apply the product rule to 1818.
13-n83-n4=413n83n4=4
Step 2
One to any power is one.
183-n4=4183n4=4
Step 3
Move 83-n83n to the numerator using the negative exponent rule 1b-n=bn1bn=bn.
8-(3-n)4=48(3n)4=4
Step 4
Rewrite 88 as 2323.
(23)-(3-n)4=4(23)(3n)4=4
Step 5
Multiply the exponents in (23)-(3-n)(23)(3n).
Tap for more steps...
Step 5.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
23(-(3-n))4=423((3n))4=4
Step 5.2
Apply the distributive property.
23(-13--n)4=423(13n)4=4
Step 5.3
Multiply -11 by 33.
23(-3--n)4=423(3n)4=4
Step 5.4
Multiply --nn.
Tap for more steps...
Step 5.4.1
Multiply -11 by -11.
23(-3+1n)4=423(3+1n)4=4
Step 5.4.2
Multiply nn by 11.
23(-3+n)4=423(3+n)4=4
23(-3+n)4=423(3+n)4=4
Step 5.5
Apply the distributive property.
23-3+3n4=4233+3n4=4
Step 5.6
Multiply 33 by -33.
2-9+3n4=429+3n4=4
2-9+3n4=429+3n4=4
Step 6
Rewrite 44 as 2222.
2-9+3n22=429+3n22=4
Step 7
Use the power rule aman=am+naman=am+n to combine exponents.
2-9+3n+2=429+3n+2=4
Step 8
Add -99 and 22.
23n-7=423n7=4
Step 9
Create equivalent expressions in the equation that all have equal bases.
23n-7=2223n7=22
Step 10
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
3n-7=23n7=2
Step 11
Solve for nn.
Tap for more steps...
Step 11.1
Move all terms not containing nn to the right side of the equation.
Tap for more steps...
Step 11.1.1
Add 77 to both sides of the equation.
3n=2+73n=2+7
Step 11.1.2
Add 22 and 77.
3n=93n=9
3n=93n=9
Step 11.2
Divide each term in 3n=93n=9 by 33 and simplify.
Tap for more steps...
Step 11.2.1
Divide each term in 3n=93n=9 by 33.
3n3=933n3=93
Step 11.2.2
Simplify the left side.
Tap for more steps...
Step 11.2.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 11.2.2.1.1
Cancel the common factor.
3n3=93
Step 11.2.2.1.2
Divide n by 1.
n=93
n=93
n=93
Step 11.2.3
Simplify the right side.
Tap for more steps...
Step 11.2.3.1
Divide 9 by 3.
n=3
n=3
n=3
n=3
 [x2  12  π  xdx ]