Enter a problem...
Basic Math Examples
(18)3-n⋅4=4(18)3−n⋅4=4
Step 1
Apply the product rule to 1818.
13-n83-n⋅4=413−n83−n⋅4=4
Step 2
One to any power is one.
183-n⋅4=4183−n⋅4=4
Step 3
Move 83-n83−n to the numerator using the negative exponent rule 1b-n=bn1b−n=bn.
8-(3-n)⋅4=48−(3−n)⋅4=4
Step 4
Rewrite 88 as 2323.
(23)-(3-n)⋅4=4(23)−(3−n)⋅4=4
Step 5
Step 5.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
23(-(3-n))⋅4=423(−(3−n))⋅4=4
Step 5.2
Apply the distributive property.
23(-1⋅3--n)⋅4=423(−1⋅3−−n)⋅4=4
Step 5.3
Multiply -1−1 by 33.
23(-3--n)⋅4=423(−3−−n)⋅4=4
Step 5.4
Multiply --n−−n.
Step 5.4.1
Multiply -1−1 by -1−1.
23(-3+1n)⋅4=423(−3+1n)⋅4=4
Step 5.4.2
Multiply nn by 11.
23(-3+n)⋅4=423(−3+n)⋅4=4
23(-3+n)⋅4=423(−3+n)⋅4=4
Step 5.5
Apply the distributive property.
23⋅-3+3n⋅4=423⋅−3+3n⋅4=4
Step 5.6
Multiply 33 by -3−3.
2-9+3n⋅4=42−9+3n⋅4=4
2-9+3n⋅4=42−9+3n⋅4=4
Step 6
Rewrite 44 as 2222.
2-9+3n⋅22=42−9+3n⋅22=4
Step 7
Use the power rule aman=am+naman=am+n to combine exponents.
2-9+3n+2=42−9+3n+2=4
Step 8
Add -9−9 and 22.
23n-7=423n−7=4
Step 9
Create equivalent expressions in the equation that all have equal bases.
23n-7=2223n−7=22
Step 10
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
3n-7=23n−7=2
Step 11
Step 11.1
Move all terms not containing nn to the right side of the equation.
Step 11.1.1
Add 77 to both sides of the equation.
3n=2+73n=2+7
Step 11.1.2
Add 22 and 77.
3n=93n=9
3n=93n=9
Step 11.2
Divide each term in 3n=93n=9 by 33 and simplify.
Step 11.2.1
Divide each term in 3n=93n=9 by 33.
3n3=933n3=93
Step 11.2.2
Simplify the left side.
Step 11.2.2.1
Cancel the common factor of 33.
Step 11.2.2.1.1
Cancel the common factor.
3n3=93
Step 11.2.2.1.2
Divide n by 1.
n=93
n=93
n=93
Step 11.2.3
Simplify the right side.
Step 11.2.3.1
Divide 9 by 3.
n=3
n=3
n=3
n=3