Enter a problem...
Basic Math Examples
y7y-2=3y13y-4y7y−2=3y13y−4
Step 1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
y(13y-4)=(7y-2)(3y)y(13y−4)=(7y−2)(3y)
Step 2
Step 2.1
Simplify y(13y-4)y(13y−4).
Step 2.1.1
Rewrite.
0+0+y(13y-4)=(7y-2)⋅(3y)0+0+y(13y−4)=(7y−2)⋅(3y)
Step 2.1.2
Simplify by multiplying through.
Step 2.1.2.1
Apply the distributive property.
y(13y)+y⋅-4=(7y-2)⋅(3y)y(13y)+y⋅−4=(7y−2)⋅(3y)
Step 2.1.2.2
Reorder.
Step 2.1.2.2.1
Rewrite using the commutative property of multiplication.
13y⋅y+y⋅-4=(7y-2)⋅(3y)13y⋅y+y⋅−4=(7y−2)⋅(3y)
Step 2.1.2.2.2
Move -4−4 to the left of yy.
13y⋅y-4⋅y=(7y-2)⋅(3y)13y⋅y−4⋅y=(7y−2)⋅(3y)
13y⋅y-4⋅y=(7y-2)⋅(3y)13y⋅y−4⋅y=(7y−2)⋅(3y)
13y⋅y-4⋅y=(7y-2)⋅(3y)13y⋅y−4⋅y=(7y−2)⋅(3y)
Step 2.1.3
Multiply yy by yy by adding the exponents.
Step 2.1.3.1
Move yy.
13(y⋅y)-4⋅y=(7y-2)⋅(3y)13(y⋅y)−4⋅y=(7y−2)⋅(3y)
Step 2.1.3.2
Multiply yy by yy.
13y2-4⋅y=(7y-2)⋅(3y)13y2−4⋅y=(7y−2)⋅(3y)
13y2-4y=(7y-2)⋅(3y)13y2−4y=(7y−2)⋅(3y)
13y2-4y=(7y-2)⋅(3y)13y2−4y=(7y−2)⋅(3y)
Step 2.2
Simplify (7y-2)⋅(3y)(7y−2)⋅(3y).
Step 2.2.1
Simplify by multiplying through.
Step 2.2.1.1
Apply the distributive property.
13y2-4y=7y(3y)-2(3y)13y2−4y=7y(3y)−2(3y)
Step 2.2.1.2
Simplify the expression.
Step 2.2.1.2.1
Rewrite using the commutative property of multiplication.
13y2-4y=7⋅3y⋅y-2(3y)13y2−4y=7⋅3y⋅y−2(3y)
Step 2.2.1.2.2
Multiply 33 by -2−2.
13y2-4y=7⋅3y⋅y-6y13y2−4y=7⋅3y⋅y−6y
13y2-4y=7⋅3y⋅y-6y13y2−4y=7⋅3y⋅y−6y
13y2-4y=7⋅3y⋅y-6y13y2−4y=7⋅3y⋅y−6y
Step 2.2.2
Simplify each term.
Step 2.2.2.1
Multiply yy by yy by adding the exponents.
Step 2.2.2.1.1
Move yy.
13y2-4y=7⋅3(y⋅y)-6y13y2−4y=7⋅3(y⋅y)−6y
Step 2.2.2.1.2
Multiply yy by yy.
13y2-4y=7⋅3y2-6y13y2−4y=7⋅3y2−6y
13y2-4y=7⋅3y2-6y13y2−4y=7⋅3y2−6y
Step 2.2.2.2
Multiply 77 by 33.
13y2-4y=21y2-6y13y2−4y=21y2−6y
13y2-4y=21y2-6y13y2−4y=21y2−6y
13y2-4y=21y2-6y13y2−4y=21y2−6y
Step 2.3
Move all terms containing yy to the left side of the equation.
Step 2.3.1
Subtract 21y221y2 from both sides of the equation.
13y2-4y-21y2=-6y13y2−4y−21y2=−6y
Step 2.3.2
Add 6y6y to both sides of the equation.
13y2-4y-21y2+6y=013y2−4y−21y2+6y=0
Step 2.3.3
Subtract 21y221y2 from 13y213y2.
-8y2-4y+6y=0−8y2−4y+6y=0
Step 2.3.4
Add -4y−4y and 6y6y.
-8y2+2y=0−8y2+2y=0
-8y2+2y=0−8y2+2y=0
Step 2.4
Factor -2y−2y out of -8y2+2y−8y2+2y.
Step 2.4.1
Factor -2y−2y out of -8y2−8y2.
-2y(4y)+2y=0−2y(4y)+2y=0
Step 2.4.2
Factor -2y−2y out of 2y2y.
-2y(4y)-2y⋅-1=0−2y(4y)−2y⋅−1=0
Step 2.4.3
Factor -2y−2y out of -2y(4y)-2y(-1)−2y(4y)−2y(−1).
-2y(4y-1)=0−2y(4y−1)=0
-2y(4y-1)=0−2y(4y−1)=0
Step 2.5
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
y=0y=0
4y-1=04y−1=0
Step 2.6
Set yy equal to 00.
y=0y=0
Step 2.7
Set 4y-14y−1 equal to 00 and solve for yy.
Step 2.7.1
Set 4y-14y−1 equal to 00.
4y-1=04y−1=0
Step 2.7.2
Solve 4y-1=04y−1=0 for yy.
Step 2.7.2.1
Add 11 to both sides of the equation.
4y=14y=1
Step 2.7.2.2
Divide each term in 4y=14y=1 by 44 and simplify.
Step 2.7.2.2.1
Divide each term in 4y=14y=1 by 44.
4y4=144y4=14
Step 2.7.2.2.2
Simplify the left side.
Step 2.7.2.2.2.1
Cancel the common factor of 44.
Step 2.7.2.2.2.1.1
Cancel the common factor.
4y4=14
Step 2.7.2.2.2.1.2
Divide y by 1.
y=14
y=14
y=14
y=14
y=14
y=14
Step 2.8
The final solution is all the values that make -2y(4y-1)=0 true.
y=0,14
y=0,14
Step 3
The result can be shown in multiple forms.
Exact Form:
y=0,14
Decimal Form:
y=0,0.25