Basic Math Examples

Solve for y y/(7y-2)=(3y)/(13y-4)
y7y-2=3y13y-4y7y2=3y13y4
Step 1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
y(13y-4)=(7y-2)(3y)y(13y4)=(7y2)(3y)
Step 2
Solve the equation for yy.
Tap for more steps...
Step 2.1
Simplify y(13y-4)y(13y4).
Tap for more steps...
Step 2.1.1
Rewrite.
0+0+y(13y-4)=(7y-2)(3y)0+0+y(13y4)=(7y2)(3y)
Step 2.1.2
Simplify by multiplying through.
Tap for more steps...
Step 2.1.2.1
Apply the distributive property.
y(13y)+y-4=(7y-2)(3y)y(13y)+y4=(7y2)(3y)
Step 2.1.2.2
Reorder.
Tap for more steps...
Step 2.1.2.2.1
Rewrite using the commutative property of multiplication.
13yy+y-4=(7y-2)(3y)13yy+y4=(7y2)(3y)
Step 2.1.2.2.2
Move -44 to the left of yy.
13yy-4y=(7y-2)(3y)13yy4y=(7y2)(3y)
13yy-4y=(7y-2)(3y)13yy4y=(7y2)(3y)
13yy-4y=(7y-2)(3y)13yy4y=(7y2)(3y)
Step 2.1.3
Multiply yy by yy by adding the exponents.
Tap for more steps...
Step 2.1.3.1
Move yy.
13(yy)-4y=(7y-2)(3y)13(yy)4y=(7y2)(3y)
Step 2.1.3.2
Multiply yy by yy.
13y2-4y=(7y-2)(3y)13y24y=(7y2)(3y)
13y2-4y=(7y-2)(3y)13y24y=(7y2)(3y)
13y2-4y=(7y-2)(3y)13y24y=(7y2)(3y)
Step 2.2
Simplify (7y-2)(3y)(7y2)(3y).
Tap for more steps...
Step 2.2.1
Simplify by multiplying through.
Tap for more steps...
Step 2.2.1.1
Apply the distributive property.
13y2-4y=7y(3y)-2(3y)13y24y=7y(3y)2(3y)
Step 2.2.1.2
Simplify the expression.
Tap for more steps...
Step 2.2.1.2.1
Rewrite using the commutative property of multiplication.
13y2-4y=73yy-2(3y)13y24y=73yy2(3y)
Step 2.2.1.2.2
Multiply 33 by -22.
13y2-4y=73yy-6y13y24y=73yy6y
13y2-4y=73yy-6y13y24y=73yy6y
13y2-4y=73yy-6y13y24y=73yy6y
Step 2.2.2
Simplify each term.
Tap for more steps...
Step 2.2.2.1
Multiply yy by yy by adding the exponents.
Tap for more steps...
Step 2.2.2.1.1
Move yy.
13y2-4y=73(yy)-6y13y24y=73(yy)6y
Step 2.2.2.1.2
Multiply yy by yy.
13y2-4y=73y2-6y13y24y=73y26y
13y2-4y=73y2-6y13y24y=73y26y
Step 2.2.2.2
Multiply 77 by 33.
13y2-4y=21y2-6y13y24y=21y26y
13y2-4y=21y2-6y13y24y=21y26y
13y2-4y=21y2-6y13y24y=21y26y
Step 2.3
Move all terms containing yy to the left side of the equation.
Tap for more steps...
Step 2.3.1
Subtract 21y221y2 from both sides of the equation.
13y2-4y-21y2=-6y13y24y21y2=6y
Step 2.3.2
Add 6y6y to both sides of the equation.
13y2-4y-21y2+6y=013y24y21y2+6y=0
Step 2.3.3
Subtract 21y221y2 from 13y213y2.
-8y2-4y+6y=08y24y+6y=0
Step 2.3.4
Add -4y4y and 6y6y.
-8y2+2y=08y2+2y=0
-8y2+2y=08y2+2y=0
Step 2.4
Factor -2y2y out of -8y2+2y8y2+2y.
Tap for more steps...
Step 2.4.1
Factor -2y2y out of -8y28y2.
-2y(4y)+2y=02y(4y)+2y=0
Step 2.4.2
Factor -2y2y out of 2y2y.
-2y(4y)-2y-1=02y(4y)2y1=0
Step 2.4.3
Factor -2y2y out of -2y(4y)-2y(-1)2y(4y)2y(1).
-2y(4y-1)=02y(4y1)=0
-2y(4y-1)=02y(4y1)=0
Step 2.5
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
y=0y=0
4y-1=04y1=0
Step 2.6
Set yy equal to 00.
y=0y=0
Step 2.7
Set 4y-14y1 equal to 00 and solve for yy.
Tap for more steps...
Step 2.7.1
Set 4y-14y1 equal to 00.
4y-1=04y1=0
Step 2.7.2
Solve 4y-1=04y1=0 for yy.
Tap for more steps...
Step 2.7.2.1
Add 11 to both sides of the equation.
4y=14y=1
Step 2.7.2.2
Divide each term in 4y=14y=1 by 44 and simplify.
Tap for more steps...
Step 2.7.2.2.1
Divide each term in 4y=14y=1 by 44.
4y4=144y4=14
Step 2.7.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.7.2.2.2.1
Cancel the common factor of 44.
Tap for more steps...
Step 2.7.2.2.2.1.1
Cancel the common factor.
4y4=14
Step 2.7.2.2.2.1.2
Divide y by 1.
y=14
y=14
y=14
y=14
y=14
y=14
Step 2.8
The final solution is all the values that make -2y(4y-1)=0 true.
y=0,14
y=0,14
Step 3
The result can be shown in multiple forms.
Exact Form:
y=0,14
Decimal Form:
y=0,0.25
 [x2  12  π  xdx ]