Basic Math Examples

Solve for y ( square root of 3^y+3^y+3^y)/( square root of 6^y+6^y+6^y)=1/64
3y+3y+3y6y+6y+6y=1643y+3y+3y6y+6y+6y=164
Step 1
Cross multiply.
Tap for more steps...
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
1(6y+6y+6y)=3y+3y+3y(64)1(6y+6y+6y)=3y+3y+3y(64)
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Simplify 1(6y+6y+6y)1(6y+6y+6y).
Tap for more steps...
Step 1.2.1.1
Multiply 6y+6y+6y6y+6y+6y by 11.
6y+6y+6y=3y+3y+3y(64)6y+6y+6y=3y+3y+3y(64)
Step 1.2.1.2
Add 6y6y and 6y6y.
26y+6y=3y+3y+3y(64)26y+6y=3y+3y+3y(64)
Step 1.2.1.3
Add 26y26y and 6y6y.
36y=3y+3y+3y(64)36y=3y+3y+3y(64)
36y=3y+3y+3y(64)36y=3y+3y+3y(64)
36y=3y+3y+3y(64)36y=3y+3y+3y(64)
Step 1.3
Simplify the right side.
Tap for more steps...
Step 1.3.1
Simplify 3y+3y+3y(64)3y+3y+3y(64).
Tap for more steps...
Step 1.3.1.1
Add 3y3y and 3y3y.
36y=23y+3y6436y=23y+3y64
Step 1.3.1.2
Add 23y23y and 3y3y.
36y=33y6436y=33y64
Step 1.3.1.3
Multiply 33 by 3y3y.
Tap for more steps...
Step 1.3.1.3.1
Raise 33 to the power of 11.
36y=313y6436y=313y64
Step 1.3.1.3.2
Use the power rule aman=am+naman=am+n to combine exponents.
36y=31+y6436y=31+y64
36y=31+y6436y=31+y64
Step 1.3.1.4
Move 6464 to the left of 31+y31+y.
36y=6431+y36y=6431+y
36y=6431+y36y=6431+y
36y=6431+y36y=6431+y
36y=6431+y36y=6431+y
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
36y2=(6431+y)236y2=(6431+y)2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axnnax=axn to rewrite 36y36y as (36y)12(36y)12.
((36y)12)2=(6431+y)2((36y)12)2=(6431+y)2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify ((36y)12)2((36y)12)2.
Tap for more steps...
Step 3.2.1.1
Multiply the exponents in ((36y)12)2((36y)12)2.
Tap for more steps...
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(36y)122=(6431+y)2(36y)122=(6431+y)2
Step 3.2.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
(36y)122=(6431+y)2
Step 3.2.1.1.2.2
Rewrite the expression.
(36y)1=(6431+y)2
(36y)1=(6431+y)2
(36y)1=(6431+y)2
Step 3.2.1.2
Simplify.
36y=(6431+y)2
36y=(6431+y)2
36y=(6431+y)2
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify (6431+y)2.
Tap for more steps...
Step 3.3.1.1
Simplify the expression.
Tap for more steps...
Step 3.3.1.1.1
Apply the product rule to 6431+y.
36y=64231+y2
Step 3.3.1.1.2
Raise 64 to the power of 2.
36y=409631+y2
36y=409631+y2
Step 3.3.1.2
Rewrite 31+y2 as 31+y.
Tap for more steps...
Step 3.3.1.2.1
Use nax=axn to rewrite 31+y as 31+y2.
36y=4096(31+y2)2
Step 3.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
36y=409631+y22
Step 3.3.1.2.3
Combine 1+y2 and 2.
36y=40963(1+y)22
Step 3.3.1.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.2.4.1
Cancel the common factor.
36y=40963(1+y)22
Step 3.3.1.2.4.2
Divide 1+y by 1.
36y=409631+y
36y=409631+y
36y=409631+y
36y=409631+y
36y=409631+y
36y=409631+y
Step 4
Solve for y.
Tap for more steps...
Step 4.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(36y)=ln(409631+y)
Step 4.2
Expand the left side.
Tap for more steps...
Step 4.2.1
Rewrite ln(36y) as ln(3)+ln(6y).
ln(3)+ln(6y)=ln(409631+y)
Step 4.2.2
Expand ln(6y) by moving y outside the logarithm.
ln(3)+yln(6)=ln(409631+y)
ln(3)+yln(6)=ln(409631+y)
Step 4.3
Expand the right side.
Tap for more steps...
Step 4.3.1
Rewrite ln(409631+y) as ln(4096)+ln(31+y).
ln(3)+yln(6)=ln(4096)+ln(31+y)
Step 4.3.2
Expand ln(31+y) by moving 1+y outside the logarithm.
ln(3)+yln(6)=ln(4096)+(1+y)ln(3)
ln(3)+yln(6)=ln(4096)+(1+y)ln(3)
Step 4.4
Simplify the right side.
Tap for more steps...
Step 4.4.1
Simplify ln(4096)+(1+y)ln(3).
Tap for more steps...
Step 4.4.1.1
Simplify each term.
Tap for more steps...
Step 4.4.1.1.1
Apply the distributive property.
ln(3)+yln(6)=ln(4096)+1ln(3)+yln(3)
Step 4.4.1.1.2
Multiply ln(3) by 1.
ln(3)+yln(6)=ln(4096)+ln(3)+yln(3)
ln(3)+yln(6)=ln(4096)+ln(3)+yln(3)
Step 4.4.1.2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln(3)+yln(6)=ln(40963)+yln(3)
Step 4.4.1.3
Multiply 4096 by 3.
ln(3)+yln(6)=ln(12288)+yln(3)
ln(3)+yln(6)=ln(12288)+yln(3)
ln(3)+yln(6)=ln(12288)+yln(3)
Step 4.5
Reorder ln(3) and yln(6).
yln(6)+ln(3)=ln(12288)+yln(3)
Step 4.6
Reorder ln(12288) and yln(3).
yln(6)+ln(3)=yln(3)+ln(12288)
Step 4.7
Move all the terms containing a logarithm to the left side of the equation.
yln(6)+ln(3)-yln(3)-ln(12288)=0
Step 4.8
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
yln(6)-yln(3)+ln(312288)=0
Step 4.9
Cancel the common factor of 3 and 12288.
Tap for more steps...
Step 4.9.1
Factor 3 out of 3.
yln(6)-yln(3)+ln(3(1)12288)=0
Step 4.9.2
Cancel the common factors.
Tap for more steps...
Step 4.9.2.1
Factor 3 out of 12288.
yln(6)-yln(3)+ln(3134096)=0
Step 4.9.2.2
Cancel the common factor.
yln(6)-yln(3)+ln(3134096)=0
Step 4.9.2.3
Rewrite the expression.
yln(6)-yln(3)+ln(14096)=0
yln(6)-yln(3)+ln(14096)=0
yln(6)-yln(3)+ln(14096)=0
Step 4.10
Subtract ln(14096) from both sides of the equation.
yln(6)-yln(3)=-ln(14096)
Step 4.11
Factor y out of yln(6)-yln(3).
Tap for more steps...
Step 4.11.1
Factor y out of yln(6).
y(ln(6))-yln(3)=-ln(14096)
Step 4.11.2
Factor y out of -yln(3).
y(ln(6))+y(-1ln(3))=-ln(14096)
Step 4.11.3
Factor y out of y(ln(6))+y(-1ln(3)).
y(ln(6)-1ln(3))=-ln(14096)
y(ln(6)-1ln(3))=-ln(14096)
Step 4.12
Rewrite -1ln(3) as -ln(3).
y(ln(6)-ln(3))=-ln(14096)
Step 4.13
Divide each term in y(ln(6)-ln(3))=-ln(14096) by ln(6)-ln(3) and simplify.
Tap for more steps...
Step 4.13.1
Divide each term in y(ln(6)-ln(3))=-ln(14096) by ln(6)-ln(3).
y(ln(6)-ln(3))ln(6)-ln(3)=-ln(14096)ln(6)-ln(3)
Step 4.13.2
Simplify the left side.
Tap for more steps...
Step 4.13.2.1
Cancel the common factor of ln(6)-ln(3).
Tap for more steps...
Step 4.13.2.1.1
Cancel the common factor.
y(ln(6)-ln(3))ln(6)-ln(3)=-ln(14096)ln(6)-ln(3)
Step 4.13.2.1.2
Divide y by 1.
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
Step 4.13.3
Simplify the right side.
Tap for more steps...
Step 4.13.3.1
Move the negative in front of the fraction.
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
Step 5
The result can be shown in multiple forms.
Exact Form:
y=-ln(14096)ln(6)-ln(3)
Decimal Form:
y=12
 [x2  12  π  xdx ]