Enter a problem...
Basic Math Examples
√3y+3y+3y√6y+6y+6y=164√3y+3y+3y√6y+6y+6y=164
Step 1
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
1⋅(√6y+6y+6y)=√3y+3y+3y⋅(64)1⋅(√6y+6y+6y)=√3y+3y+3y⋅(64)
Step 1.2
Simplify the left side.
Step 1.2.1
Simplify 1⋅(√6y+6y+6y)1⋅(√6y+6y+6y).
Step 1.2.1.1
Multiply √6y+6y+6y√6y+6y+6y by 11.
√6y+6y+6y=√3y+3y+3y⋅(64)√6y+6y+6y=√3y+3y+3y⋅(64)
Step 1.2.1.2
Add 6y6y and 6y6y.
√2⋅6y+6y=√3y+3y+3y⋅(64)√2⋅6y+6y=√3y+3y+3y⋅(64)
Step 1.2.1.3
Add 2⋅6y2⋅6y and 6y6y.
√3⋅6y=√3y+3y+3y⋅(64)√3⋅6y=√3y+3y+3y⋅(64)
√3⋅6y=√3y+3y+3y⋅(64)√3⋅6y=√3y+3y+3y⋅(64)
√3⋅6y=√3y+3y+3y⋅(64)√3⋅6y=√3y+3y+3y⋅(64)
Step 1.3
Simplify the right side.
Step 1.3.1
Simplify √3y+3y+3y⋅(64)√3y+3y+3y⋅(64).
Step 1.3.1.1
Add 3y3y and 3y3y.
√3⋅6y=√2⋅3y+3y⋅64√3⋅6y=√2⋅3y+3y⋅64
Step 1.3.1.2
Add 2⋅3y2⋅3y and 3y3y.
√3⋅6y=√3⋅3y⋅64√3⋅6y=√3⋅3y⋅64
Step 1.3.1.3
Multiply 33 by 3y3y.
Step 1.3.1.3.1
Raise 33 to the power of 11.
√3⋅6y=√31⋅3y⋅64√3⋅6y=√31⋅3y⋅64
Step 1.3.1.3.2
Use the power rule aman=am+naman=am+n to combine exponents.
√3⋅6y=√31+y⋅64√3⋅6y=√31+y⋅64
√3⋅6y=√31+y⋅64√3⋅6y=√31+y⋅64
Step 1.3.1.4
Move 6464 to the left of √31+y√31+y.
√3⋅6y=64√31+y√3⋅6y=64√31+y
√3⋅6y=64√31+y√3⋅6y=64√31+y
√3⋅6y=64√31+y√3⋅6y=64√31+y
√3⋅6y=64√31+y√3⋅6y=64√31+y
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√3⋅6y2=(64√31+y)2√3⋅6y2=(64√31+y)2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √3⋅6y√3⋅6y as (3⋅6y)12(3⋅6y)12.
((3⋅6y)12)2=(64√31+y)2((3⋅6y)12)2=(64√31+y)2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((3⋅6y)12)2((3⋅6y)12)2.
Step 3.2.1.1
Multiply the exponents in ((3⋅6y)12)2((3⋅6y)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(3⋅6y)12⋅2=(64√31+y)2(3⋅6y)12⋅2=(64√31+y)2
Step 3.2.1.1.2
Cancel the common factor of 22.
Step 3.2.1.1.2.1
Cancel the common factor.
(3⋅6y)12⋅2=(64√31+y)2
Step 3.2.1.1.2.2
Rewrite the expression.
(3⋅6y)1=(64√31+y)2
(3⋅6y)1=(64√31+y)2
(3⋅6y)1=(64√31+y)2
Step 3.2.1.2
Simplify.
3⋅6y=(64√31+y)2
3⋅6y=(64√31+y)2
3⋅6y=(64√31+y)2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (64√31+y)2.
Step 3.3.1.1
Simplify the expression.
Step 3.3.1.1.1
Apply the product rule to 64√31+y.
3⋅6y=642√31+y2
Step 3.3.1.1.2
Raise 64 to the power of 2.
3⋅6y=4096√31+y2
3⋅6y=4096√31+y2
Step 3.3.1.2
Rewrite √31+y2 as 31+y.
Step 3.3.1.2.1
Use n√ax=axn to rewrite √31+y as 31+y2.
3⋅6y=4096(31+y2)2
Step 3.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
3⋅6y=4096⋅31+y2⋅2
Step 3.3.1.2.3
Combine 1+y2 and 2.
3⋅6y=4096⋅3(1+y)⋅22
Step 3.3.1.2.4
Cancel the common factor of 2.
Step 3.3.1.2.4.1
Cancel the common factor.
3⋅6y=4096⋅3(1+y)⋅22
Step 3.3.1.2.4.2
Divide 1+y by 1.
3⋅6y=4096⋅31+y
3⋅6y=4096⋅31+y
3⋅6y=4096⋅31+y
3⋅6y=4096⋅31+y
3⋅6y=4096⋅31+y
3⋅6y=4096⋅31+y
Step 4
Step 4.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(3⋅6y)=ln(4096⋅31+y)
Step 4.2
Expand the left side.
Step 4.2.1
Rewrite ln(3⋅6y) as ln(3)+ln(6y).
ln(3)+ln(6y)=ln(4096⋅31+y)
Step 4.2.2
Expand ln(6y) by moving y outside the logarithm.
ln(3)+yln(6)=ln(4096⋅31+y)
ln(3)+yln(6)=ln(4096⋅31+y)
Step 4.3
Expand the right side.
Step 4.3.1
Rewrite ln(4096⋅31+y) as ln(4096)+ln(31+y).
ln(3)+yln(6)=ln(4096)+ln(31+y)
Step 4.3.2
Expand ln(31+y) by moving 1+y outside the logarithm.
ln(3)+yln(6)=ln(4096)+(1+y)ln(3)
ln(3)+yln(6)=ln(4096)+(1+y)ln(3)
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify ln(4096)+(1+y)ln(3).
Step 4.4.1.1
Simplify each term.
Step 4.4.1.1.1
Apply the distributive property.
ln(3)+yln(6)=ln(4096)+1ln(3)+yln(3)
Step 4.4.1.1.2
Multiply ln(3) by 1.
ln(3)+yln(6)=ln(4096)+ln(3)+yln(3)
ln(3)+yln(6)=ln(4096)+ln(3)+yln(3)
Step 4.4.1.2
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln(3)+yln(6)=ln(4096⋅3)+yln(3)
Step 4.4.1.3
Multiply 4096 by 3.
ln(3)+yln(6)=ln(12288)+yln(3)
ln(3)+yln(6)=ln(12288)+yln(3)
ln(3)+yln(6)=ln(12288)+yln(3)
Step 4.5
Reorder ln(3) and yln(6).
yln(6)+ln(3)=ln(12288)+yln(3)
Step 4.6
Reorder ln(12288) and yln(3).
yln(6)+ln(3)=yln(3)+ln(12288)
Step 4.7
Move all the terms containing a logarithm to the left side of the equation.
yln(6)+ln(3)-yln(3)-ln(12288)=0
Step 4.8
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
yln(6)-yln(3)+ln(312288)=0
Step 4.9
Cancel the common factor of 3 and 12288.
Step 4.9.1
Factor 3 out of 3.
yln(6)-yln(3)+ln(3(1)12288)=0
Step 4.9.2
Cancel the common factors.
Step 4.9.2.1
Factor 3 out of 12288.
yln(6)-yln(3)+ln(3⋅13⋅4096)=0
Step 4.9.2.2
Cancel the common factor.
yln(6)-yln(3)+ln(3⋅13⋅4096)=0
Step 4.9.2.3
Rewrite the expression.
yln(6)-yln(3)+ln(14096)=0
yln(6)-yln(3)+ln(14096)=0
yln(6)-yln(3)+ln(14096)=0
Step 4.10
Subtract ln(14096) from both sides of the equation.
yln(6)-yln(3)=-ln(14096)
Step 4.11
Factor y out of yln(6)-yln(3).
Step 4.11.1
Factor y out of yln(6).
y(ln(6))-yln(3)=-ln(14096)
Step 4.11.2
Factor y out of -yln(3).
y(ln(6))+y(-1ln(3))=-ln(14096)
Step 4.11.3
Factor y out of y(ln(6))+y(-1ln(3)).
y(ln(6)-1ln(3))=-ln(14096)
y(ln(6)-1ln(3))=-ln(14096)
Step 4.12
Rewrite -1ln(3) as -ln(3).
y(ln(6)-ln(3))=-ln(14096)
Step 4.13
Divide each term in y(ln(6)-ln(3))=-ln(14096) by ln(6)-ln(3) and simplify.
Step 4.13.1
Divide each term in y(ln(6)-ln(3))=-ln(14096) by ln(6)-ln(3).
y(ln(6)-ln(3))ln(6)-ln(3)=-ln(14096)ln(6)-ln(3)
Step 4.13.2
Simplify the left side.
Step 4.13.2.1
Cancel the common factor of ln(6)-ln(3).
Step 4.13.2.1.1
Cancel the common factor.
y(ln(6)-ln(3))ln(6)-ln(3)=-ln(14096)ln(6)-ln(3)
Step 4.13.2.1.2
Divide y by 1.
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
Step 4.13.3
Simplify the right side.
Step 4.13.3.1
Move the negative in front of the fraction.
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
y=-ln(14096)ln(6)-ln(3)
Step 5
The result can be shown in multiple forms.
Exact Form:
y=-ln(14096)ln(6)-ln(3)
Decimal Form:
y=12