Enter a problem...
Basic Math Examples
19z2z-6=y6z-1819z2z−6=y6z−18
Step 1
Rewrite the equation as y6z-18=19z2z-6y6z−18=19z2z−6.
y6z-18=19z2z-6y6z−18=19z2z−6
Step 2
Multiply both sides by 6z-186z−18.
y6z-18(6z-18)=19z2z-6(6z-18)y6z−18(6z−18)=19z2z−6(6z−18)
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Cancel the common factor of 6z-186z−18.
Step 3.1.1.1
Cancel the common factor.
y6z-18(6z-18)=19z2z-6(6z-18)
Step 3.1.1.2
Rewrite the expression.
y=19z2z-6(6z-18)
y=19z2z-6(6z-18)
y=19z2z-6(6z-18)
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify 19z2z-6(6z-18).
Step 3.2.1.1
Simplify terms.
Step 3.2.1.1.1
Factor 2 out of 2z-6.
Step 3.2.1.1.1.1
Factor 2 out of 2z.
y=19z2(z)-6(6z-18)
Step 3.2.1.1.1.2
Factor 2 out of -6.
y=19z2z+2⋅-3(6z-18)
Step 3.2.1.1.1.3
Factor 2 out of 2z+2⋅-3.
y=19z2(z-3)(6z-18)
y=19z2(z-3)(6z-18)
Step 3.2.1.1.2
Multiply 19z2(z-3) by 6z-18.
y=19z(6z-18)2(z-3)
Step 3.2.1.1.3
Cancel the common factor of 6z-18 and 2.
Step 3.2.1.1.3.1
Factor 2 out of 19z(6z-18).
y=2(19z(3z-9))2(z-3)
Step 3.2.1.1.3.2
Cancel the common factors.
Step 3.2.1.1.3.2.1
Cancel the common factor.
y=2(19z(3z-9))2(z-3)
Step 3.2.1.1.3.2.2
Rewrite the expression.
y=19z(3z-9)z-3
y=19z(3z-9)z-3
y=19z(3z-9)z-3
y=19z(3z-9)z-3
Step 3.2.1.2
Simplify the numerator.
Step 3.2.1.2.1
Factor 3 out of 3z-9.
Step 3.2.1.2.1.1
Factor 3 out of 3z.
y=19z(3(z)-9)z-3
Step 3.2.1.2.1.2
Factor 3 out of -9.
y=19z(3z+3⋅-3)z-3
Step 3.2.1.2.1.3
Factor 3 out of 3z+3⋅-3.
y=19z(3(z-3))z-3
y=19z⋅3(z-3)z-3
Step 3.2.1.2.2
Multiply 3 by 19.
y=57z(z-3)z-3
y=57z(z-3)z-3
Step 3.2.1.3
Cancel the common factor of z-3.
Step 3.2.1.3.1
Cancel the common factor.
y=57z(z-3)z-3
Step 3.2.1.3.2
Divide 57z by 1.
y=57z
y=57z
y=57z
y=57z
y=57z