Basic Math Examples

Solve for y 1/3*(y-9)=-4y+13/3y-3
13(y-9)=-4y+133y-313(y9)=4y+133y3
Step 1
Since yy is on the right side of the equation, switch the sides so it is on the left side of the equation.
-4y+133y-3=13(y-9)4y+133y3=13(y9)
Step 2
Simplify -4y+133y-34y+133y3.
Tap for more steps...
Step 2.1
Combine 133133 and yy.
-4y+13y3-3=13(y-9)4y+13y33=13(y9)
Step 2.2
To write -4y4y as a fraction with a common denominator, multiply by 3333.
-4y33+13y3-3=13(y-9)4y33+13y33=13(y9)
Step 2.3
Simplify terms.
Tap for more steps...
Step 2.3.1
Combine -4y4y and 3333.
-4y33+13y3-3=13(y-9)4y33+13y33=13(y9)
Step 2.3.2
Combine the numerators over the common denominator.
-4y3+13y3-3=13(y-9)4y3+13y33=13(y9)
-4y3+13y3-3=13(y-9)4y3+13y33=13(y9)
Step 2.4
Simplify each term.
Tap for more steps...
Step 2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.4.1.1
Factor yy out of -4y3+13y4y3+13y.
Tap for more steps...
Step 2.4.1.1.1
Factor yy out of -4y34y3.
y(-43)+13y3-3=13(y-9)y(43)+13y33=13(y9)
Step 2.4.1.1.2
Factor yy out of 13y13y.
y(-43)+y133-3=13(y-9)y(43)+y1333=13(y9)
Step 2.4.1.1.3
Factor yy out of y(-43)+y13y(43)+y13.
y(-43+13)3-3=13(y-9)y(43+13)33=13(y9)
y(-43+13)3-3=13(y-9)y(43+13)33=13(y9)
Step 2.4.1.2
Multiply -44 by 33.
y(-12+13)3-3=13(y-9)y(12+13)33=13(y9)
Step 2.4.1.3
Add -1212 and 1313.
y13-3=13(y-9)y133=13(y9)
y13-3=13(y-9)y133=13(y9)
Step 2.4.2
Multiply yy by 11.
y3-3=13(y-9)y33=13(y9)
y3-3=13(y-9)y33=13(y9)
y3-3=13(y-9)y33=13(y9)
Step 3
Simplify 13(y-9)13(y9).
Tap for more steps...
Step 3.1
Apply the distributive property.
y3-3=13y+13-9y33=13y+139
Step 3.2
Combine 1313 and yy.
y3-3=y3+13-9y33=y3+139
Step 3.3
Cancel the common factor of 33.
Tap for more steps...
Step 3.3.1
Factor 33 out of -99.
y3-3=y3+13(3(-3))y33=y3+13(3(3))
Step 3.3.2
Cancel the common factor.
y3-3=y3+13(3-3)
Step 3.3.3
Rewrite the expression.
y3-3=y3-3
y3-3=y3-3
y3-3=y3-3
Step 4
Move all terms containing y to the left side of the equation.
Tap for more steps...
Step 4.1
Subtract y3 from both sides of the equation.
y3-3-y3=-3
Step 4.2
Combine the opposite terms in y3-3-y3.
Tap for more steps...
Step 4.2.1
Subtract y3 from y3.
0-3=-3
Step 4.2.2
Subtract 3 from 0.
-3=-3
-3=-3
-3=-3
Step 5
Since -3=-3, the equation will always be true for any value of y.
All real numbers
Step 6
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]