Enter a problem...
Basic Math Examples
13⋅(y-9)=-4y+133y-313⋅(y−9)=−4y+133y−3
Step 1
Since yy is on the right side of the equation, switch the sides so it is on the left side of the equation.
-4y+133y-3=13⋅(y-9)−4y+133y−3=13⋅(y−9)
Step 2
Step 2.1
Combine 133133 and yy.
-4y+13y3-3=13⋅(y-9)−4y+13y3−3=13⋅(y−9)
Step 2.2
To write -4y−4y as a fraction with a common denominator, multiply by 3333.
-4y⋅33+13y3-3=13⋅(y-9)−4y⋅33+13y3−3=13⋅(y−9)
Step 2.3
Simplify terms.
Step 2.3.1
Combine -4y−4y and 3333.
-4y⋅33+13y3-3=13⋅(y-9)−4y⋅33+13y3−3=13⋅(y−9)
Step 2.3.2
Combine the numerators over the common denominator.
-4y⋅3+13y3-3=13⋅(y-9)−4y⋅3+13y3−3=13⋅(y−9)
-4y⋅3+13y3-3=13⋅(y-9)−4y⋅3+13y3−3=13⋅(y−9)
Step 2.4
Simplify each term.
Step 2.4.1
Simplify the numerator.
Step 2.4.1.1
Factor yy out of -4y⋅3+13y−4y⋅3+13y.
Step 2.4.1.1.1
Factor yy out of -4y⋅3−4y⋅3.
y(-4⋅3)+13y3-3=13⋅(y-9)y(−4⋅3)+13y3−3=13⋅(y−9)
Step 2.4.1.1.2
Factor yy out of 13y13y.
y(-4⋅3)+y⋅133-3=13⋅(y-9)y(−4⋅3)+y⋅133−3=13⋅(y−9)
Step 2.4.1.1.3
Factor yy out of y(-4⋅3)+y⋅13y(−4⋅3)+y⋅13.
y(-4⋅3+13)3-3=13⋅(y-9)y(−4⋅3+13)3−3=13⋅(y−9)
y(-4⋅3+13)3-3=13⋅(y-9)y(−4⋅3+13)3−3=13⋅(y−9)
Step 2.4.1.2
Multiply -4−4 by 33.
y(-12+13)3-3=13⋅(y-9)y(−12+13)3−3=13⋅(y−9)
Step 2.4.1.3
Add -12−12 and 1313.
y⋅13-3=13⋅(y-9)y⋅13−3=13⋅(y−9)
y⋅13-3=13⋅(y-9)y⋅13−3=13⋅(y−9)
Step 2.4.2
Multiply yy by 11.
y3-3=13⋅(y-9)y3−3=13⋅(y−9)
y3-3=13⋅(y-9)y3−3=13⋅(y−9)
y3-3=13⋅(y-9)y3−3=13⋅(y−9)
Step 3
Step 3.1
Apply the distributive property.
y3-3=13y+13⋅-9y3−3=13y+13⋅−9
Step 3.2
Combine 1313 and yy.
y3-3=y3+13⋅-9y3−3=y3+13⋅−9
Step 3.3
Cancel the common factor of 33.
Step 3.3.1
Factor 33 out of -9−9.
y3-3=y3+13⋅(3(-3))y3−3=y3+13⋅(3(−3))
Step 3.3.2
Cancel the common factor.
y3-3=y3+13⋅(3⋅-3)
Step 3.3.3
Rewrite the expression.
y3-3=y3-3
y3-3=y3-3
y3-3=y3-3
Step 4
Step 4.1
Subtract y3 from both sides of the equation.
y3-3-y3=-3
Step 4.2
Combine the opposite terms in y3-3-y3.
Step 4.2.1
Subtract y3 from y3.
0-3=-3
Step 4.2.2
Subtract 3 from 0.
-3=-3
-3=-3
-3=-3
Step 5
Since -3=-3, the equation will always be true for any value of y.
All real numbers
Step 6
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)