Enter a problem...
Basic Math Examples
13y=-1013y=−10
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
3y,13y,1
Step 1.2
The LCM of one and any expression is the expression.
3y3y
3y3y
Step 2
Step 2.1
Multiply each term in 13y=-1013y=−10 by 3y3y.
13y(3y)=-10(3y)13y(3y)=−10(3y)
Step 2.2
Simplify the left side.
Step 2.2.1
Rewrite using the commutative property of multiplication.
313yy=-10(3y)313yy=−10(3y)
Step 2.2.2
Cancel the common factor of 33.
Step 2.2.2.1
Factor 33 out of 3y3y.
313(y)y=-10(3y)313(y)y=−10(3y)
Step 2.2.2.2
Cancel the common factor.
313yy=-10(3y)
Step 2.2.2.3
Rewrite the expression.
1yy=-10(3y)
1yy=-10(3y)
Step 2.2.3
Cancel the common factor of y.
Step 2.2.3.1
Cancel the common factor.
1yy=-10(3y)
Step 2.2.3.2
Rewrite the expression.
1=-10(3y)
1=-10(3y)
1=-10(3y)
Step 2.3
Simplify the right side.
Step 2.3.1
Multiply 3 by -10.
1=-30y
1=-30y
1=-30y
Step 3
Step 3.1
Rewrite the equation as -30y=1.
-30y=1
Step 3.2
Divide each term in -30y=1 by -30 and simplify.
Step 3.2.1
Divide each term in -30y=1 by -30.
-30y-30=1-30
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of -30.
Step 3.2.2.1.1
Cancel the common factor.
-30y-30=1-30
Step 3.2.2.1.2
Divide y by 1.
y=1-30
y=1-30
y=1-30
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Move the negative in front of the fraction.
y=-130
y=-130
y=-130
y=-130
Step 4
The result can be shown in multiple forms.
Exact Form:
y=-130
Decimal Form:
y=-0.0‾3