Enter a problem...
Basic Math Examples
4=6u-34=6u−3
Step 1
Rewrite the equation as 6u-3=46u−3=4.
6u-3=46u−3=4
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
u-3,1u−3,1
Step 2.2
Remove parentheses.
u-3,1u−3,1
Step 2.3
The LCM of one and any expression is the expression.
u-3u−3
u-3u−3
Step 3
Step 3.1
Multiply each term in 6u-3=46u−3=4 by u-3u−3.
6u-3(u-3)=4(u-3)6u−3(u−3)=4(u−3)
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of u-3u−3.
Step 3.2.1.1
Cancel the common factor.
6u-3(u-3)=4(u-3)
Step 3.2.1.2
Rewrite the expression.
6=4(u-3)
6=4(u-3)
6=4(u-3)
Step 3.3
Simplify the right side.
Step 3.3.1
Apply the distributive property.
6=4u+4⋅-3
Step 3.3.2
Multiply 4 by -3.
6=4u-12
6=4u-12
6=4u-12
Step 4
Step 4.1
Rewrite the equation as 4u-12=6.
4u-12=6
Step 4.2
Move all terms not containing u to the right side of the equation.
Step 4.2.1
Add 12 to both sides of the equation.
4u=6+12
Step 4.2.2
Add 6 and 12.
4u=18
4u=18
Step 4.3
Divide each term in 4u=18 by 4 and simplify.
Step 4.3.1
Divide each term in 4u=18 by 4.
4u4=184
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of 4.
Step 4.3.2.1.1
Cancel the common factor.
4u4=184
Step 4.3.2.1.2
Divide u by 1.
u=184
u=184
u=184
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Cancel the common factor of 18 and 4.
Step 4.3.3.1.1
Factor 2 out of 18.
u=2(9)4
Step 4.3.3.1.2
Cancel the common factors.
Step 4.3.3.1.2.1
Factor 2 out of 4.
u=2⋅92⋅2
Step 4.3.3.1.2.2
Cancel the common factor.
u=2⋅92⋅2
Step 4.3.3.1.2.3
Rewrite the expression.
u=92
u=92
u=92
u=92
u=92
u=92
Step 5
The result can be shown in multiple forms.
Exact Form:
u=92
Decimal Form:
u=4.5
Mixed Number Form:
u=412