Enter a problem...
Basic Math Examples
6u2-3u+43u2+5u-9=2
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
3u2+5u-9,1
Step 1.2
Remove parentheses.
3u2+5u-9,1
Step 1.3
The LCM of one and any expression is the expression.
3u2+5u-9
3u2+5u-9
Step 2
Step 2.1
Multiply each term in 6u2-3u+43u2+5u-9=2 by 3u2+5u-9.
6u2-3u+43u2+5u-9(3u2+5u-9)=2(3u2+5u-9)
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 3u2+5u-9.
Step 2.2.1.1
Cancel the common factor.
6u2-3u+43u2+5u-9(3u2+5u-9)=2(3u2+5u-9)
Step 2.2.1.2
Rewrite the expression.
6u2-3u+4=2(3u2+5u-9)
6u2-3u+4=2(3u2+5u-9)
6u2-3u+4=2(3u2+5u-9)
Step 2.3
Simplify the right side.
Step 2.3.1
Apply the distributive property.
6u2-3u+4=2(3u2)+2(5u)+2⋅-9
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 3 by 2.
6u2-3u+4=6u2+2(5u)+2⋅-9
Step 2.3.2.2
Multiply 5 by 2.
6u2-3u+4=6u2+10u+2⋅-9
Step 2.3.2.3
Multiply 2 by -9.
6u2-3u+4=6u2+10u-18
6u2-3u+4=6u2+10u-18
6u2-3u+4=6u2+10u-18
6u2-3u+4=6u2+10u-18
Step 3
Step 3.1
Move all terms containing u to the left side of the equation.
Step 3.1.1
Subtract 6u2 from both sides of the equation.
6u2-3u+4-6u2=10u-18
Step 3.1.2
Subtract 10u from both sides of the equation.
6u2-3u+4-6u2-10u=-18
Step 3.1.3
Combine the opposite terms in 6u2-3u+4-6u2-10u.
Step 3.1.3.1
Subtract 6u2 from 6u2.
-3u+4+0-10u=-18
Step 3.1.3.2
Add -3u+4 and 0.
-3u+4-10u=-18
-3u+4-10u=-18
Step 3.1.4
Subtract 10u from -3u.
-13u+4=-18
-13u+4=-18
Step 3.2
Move all terms not containing u to the right side of the equation.
Step 3.2.1
Subtract 4 from both sides of the equation.
-13u=-18-4
Step 3.2.2
Subtract 4 from -18.
-13u=-22
-13u=-22
Step 3.3
Divide each term in -13u=-22 by -13 and simplify.
Step 3.3.1
Divide each term in -13u=-22 by -13.
-13u-13=-22-13
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of -13.
Step 3.3.2.1.1
Cancel the common factor.
-13u-13=-22-13
Step 3.3.2.1.2
Divide u by 1.
u=-22-13
u=-22-13
u=-22-13
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Dividing two negative values results in a positive value.
u=2213
u=2213
u=2213
u=2213
Step 4
The result can be shown in multiple forms.
Exact Form:
u=2213
Decimal Form:
u=1.‾692307
Mixed Number Form:
u=1913