Enter a problem...
Basic Math Examples
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 1.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 1.4
has factors of and .
Step 1.5
Multiply by .
Step 1.6
The factor for is itself.
occurs time.
Step 1.7
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 1.8
The Least Common Multiple of some numbers is the smallest number that the numbers are factors of.
Step 2
Step 2.1
Multiply each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Rewrite using the commutative property of multiplication.
Step 2.2.1.2
Apply the distributive property.
Step 2.2.1.3
Multiply by by adding the exponents.
Step 2.2.1.3.1
Move .
Step 2.2.1.3.2
Multiply by .
Step 2.2.1.4
Multiply by .
Step 2.2.1.5
Rewrite using the commutative property of multiplication.
Step 2.2.1.6
Multiply .
Step 2.2.1.6.1
Combine and .
Step 2.2.1.6.2
Multiply by .
Step 2.2.1.7
Cancel the common factor of .
Step 2.2.1.7.1
Cancel the common factor.
Step 2.2.1.7.2
Rewrite the expression.
Step 2.3
Simplify the right side.
Step 2.3.1
Cancel the common factor of .
Step 2.3.1.1
Cancel the common factor.
Step 2.3.1.2
Rewrite the expression.
Step 3
Step 3.1
Move all terms containing to the left side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Move all terms to the left side of the equation and simplify.
Step 3.2.1
Add to both sides of the equation.
Step 3.2.2
Add and .
Step 3.3
Use the quadratic formula to find the solutions.
Step 3.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5
Simplify.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Subtract from .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.5
Rewrite as .
Step 3.5.1.6
Rewrite as .
Step 3.5.1.7
Rewrite as .
Step 3.5.1.7.1
Factor out of .
Step 3.5.1.7.2
Rewrite as .
Step 3.5.1.8
Pull terms out from under the radical.
Step 3.5.1.9
Move to the left of .
Step 3.5.2
Multiply by .
Step 3.6
The final answer is the combination of both solutions.