Enter a problem...
Basic Math Examples
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 1.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 1.4
has factors of and .
Step 1.5
Multiply by .
Step 1.6
The factor for is itself.
occurs time.
Step 1.7
The factor for is itself.
occurs time.
Step 1.8
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 1.9
The Least Common Multiple of some numbers is the smallest number that the numbers are factors of.
Step 2
Step 2.1
Multiply each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Rewrite using the commutative property of multiplication.
Step 2.2.1.2
Combine and .
Step 2.2.1.3
Cancel the common factor of .
Step 2.2.1.3.1
Cancel the common factor.
Step 2.2.1.3.2
Rewrite the expression.
Step 2.2.1.4
Apply the distributive property.
Step 2.2.1.5
Multiply by .
Step 2.2.1.6
Multiply by .
Step 2.2.1.7
Rewrite using the commutative property of multiplication.
Step 2.2.1.8
Combine and .
Step 2.2.1.9
Cancel the common factor of .
Step 2.2.1.9.1
Factor out of .
Step 2.2.1.9.2
Cancel the common factor.
Step 2.2.1.9.3
Rewrite the expression.
Step 2.2.1.10
Apply the distributive property.
Step 2.2.1.11
Multiply by by adding the exponents.
Step 2.2.1.11.1
Move .
Step 2.2.1.11.2
Multiply by .
Step 2.2.1.12
Multiply by .
Step 2.2.2
Subtract from .
Step 2.3
Simplify the right side.
Step 2.3.1
Cancel the common factor of .
Step 2.3.1.1
Factor out of .
Step 2.3.1.2
Cancel the common factor.
Step 2.3.1.3
Rewrite the expression.
Step 2.3.2
Expand using the FOIL Method.
Step 2.3.2.1
Apply the distributive property.
Step 2.3.2.2
Apply the distributive property.
Step 2.3.2.3
Apply the distributive property.
Step 2.3.3
Simplify and combine like terms.
Step 2.3.3.1
Simplify each term.
Step 2.3.3.1.1
Rewrite using the commutative property of multiplication.
Step 2.3.3.1.2
Multiply by by adding the exponents.
Step 2.3.3.1.2.1
Move .
Step 2.3.3.1.2.2
Multiply by .
Step 2.3.3.1.3
Move to the left of .
Step 2.3.3.1.4
Multiply by .
Step 2.3.3.1.5
Multiply by .
Step 2.3.3.2
Subtract from .
Step 3
Step 3.1
Move all terms containing to the left side of the equation.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Add to both sides of the equation.
Step 3.1.3
Combine the opposite terms in .
Step 3.1.3.1
Subtract from .
Step 3.1.3.2
Add and .
Step 3.1.4
Add and .
Step 3.2
Move all terms not containing to the right side of the equation.
Step 3.2.1
Add to both sides of the equation.
Step 3.2.2
Add and .
Step 3.3
Divide each term in by and simplify.
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of .
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form: