Basic Math Examples

Solve for t 10.4=1/2*9.8^(t^2)
10.4=129.8t210.4=129.8t2
Step 1
Rewrite the equation as 129.8t2=10.4129.8t2=10.4.
129.8t2=10.4129.8t2=10.4
Step 2
Multiply both sides of the equation by 22.
2(129.8t2)=210.42(129.8t2)=210.4
Step 3
Simplify both sides of the equation.
Tap for more steps...
Step 3.1
Simplify the left side.
Tap for more steps...
Step 3.1.1
Simplify 2(129.8t2)2(129.8t2).
Tap for more steps...
Step 3.1.1.1
Combine 1212 and 9.8t29.8t2.
29.8t22=210.429.8t22=210.4
Step 3.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.1.1.2.1
Cancel the common factor.
29.8t22=210.4
Step 3.1.1.2.2
Rewrite the expression.
9.8t2=210.4
9.8t2=210.4
9.8t2=210.4
9.8t2=210.4
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Multiply 2 by 10.4.
9.8t2=20.8
9.8t2=20.8
9.8t2=20.8
Step 4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(9.8t2)=ln(20.8)
Step 5
Expand ln(9.8t2) by moving t2 outside the logarithm.
t2ln(9.8)=ln(20.8)
Step 6
Divide each term in t2ln(9.8)=ln(20.8) by ln(9.8) and simplify.
Tap for more steps...
Step 6.1
Divide each term in t2ln(9.8)=ln(20.8) by ln(9.8).
t2ln(9.8)ln(9.8)=ln(20.8)ln(9.8)
Step 6.2
Simplify the left side.
Tap for more steps...
Step 6.2.1
Cancel the common factor of ln(9.8).
Tap for more steps...
Step 6.2.1.1
Cancel the common factor.
t2ln(9.8)ln(9.8)=ln(20.8)ln(9.8)
Step 6.2.1.2
Divide t2 by 1.
t2=ln(20.8)ln(9.8)
t2=ln(20.8)ln(9.8)
t2=ln(20.8)ln(9.8)
t2=ln(20.8)ln(9.8)
Step 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
t=±ln(20.8)ln(9.8)
Step 8
Simplify ±ln(20.8)ln(9.8).
Tap for more steps...
Step 8.1
Rewrite ln(20.8)ln(9.8) as ln(20.8)ln(9.8).
t=±ln(20.8)ln(9.8)
Step 8.2
Multiply ln(20.8)ln(9.8) by ln(9.8)ln(9.8).
t=±ln(20.8)ln(9.8)ln(9.8)ln(9.8)
Step 8.3
Combine and simplify the denominator.
Tap for more steps...
Step 8.3.1
Multiply ln(20.8)ln(9.8) by ln(9.8)ln(9.8).
t=±ln(20.8)ln(9.8)ln(9.8)ln(9.8)
Step 8.3.2
Raise ln(9.8) to the power of 1.
t=±ln(20.8)ln(9.8)ln(9.8)1ln(9.8)
Step 8.3.3
Raise ln(9.8) to the power of 1.
t=±ln(20.8)ln(9.8)ln(9.8)1ln(9.8)1
Step 8.3.4
Use the power rule aman=am+n to combine exponents.
t=±ln(20.8)ln(9.8)ln(9.8)1+1
Step 8.3.5
Add 1 and 1.
t=±ln(20.8)ln(9.8)ln(9.8)2
Step 8.3.6
Rewrite ln(9.8)2 as ln(9.8).
Tap for more steps...
Step 8.3.6.1
Use nax=axn to rewrite ln(9.8) as ln(9.8)12.
t=±ln(20.8)ln(9.8)(ln(9.8)12)2
Step 8.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
t=±ln(20.8)ln(9.8)ln(9.8)122
Step 8.3.6.3
Combine 12 and 2.
t=±ln(20.8)ln(9.8)ln(9.8)22
Step 8.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.6.4.1
Cancel the common factor.
t=±ln(20.8)ln(9.8)ln(9.8)22
Step 8.3.6.4.2
Rewrite the expression.
t=±ln(20.8)ln(9.8)ln1(9.8)
t=±ln(20.8)ln(9.8)ln1(9.8)
Step 8.3.6.5
Simplify.
t=±ln(20.8)ln(9.8)ln(9.8)
t=±ln(20.8)ln(9.8)ln(9.8)
t=±ln(20.8)ln(9.8)ln(9.8)
Step 8.4
Combine using the product rule for radicals.
t=±ln(20.8)ln(9.8)ln(9.8)
t=±ln(20.8)ln(9.8)ln(9.8)
Step 9
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 9.1
First, use the positive value of the ± to find the first solution.
t=ln(20.8)ln(9.8)ln(9.8)
Step 9.2
Next, use the negative value of the ± to find the second solution.
t=-ln(20.8)ln(9.8)ln(9.8)
Step 9.3
The complete solution is the result of both the positive and negative portions of the solution.
t=ln(20.8)ln(9.8)ln(9.8),-ln(20.8)ln(9.8)ln(9.8)
t=ln(20.8)ln(9.8)ln(9.8),-ln(20.8)ln(9.8)ln(9.8)
Step 10
The result can be shown in multiple forms.
Exact Form:
t=ln(20.8)ln(9.8)ln(9.8),-ln(20.8)ln(9.8)ln(9.8)
Decimal Form:
t=1.15313931,-1.15313931
 [x2  12  π  xdx ]