Enter a problem...
Basic Math Examples
10.4=12⋅9.8t210.4=12⋅9.8t2
Step 1
Rewrite the equation as 12⋅9.8t2=10.412⋅9.8t2=10.4.
12⋅9.8t2=10.412⋅9.8t2=10.4
Step 2
Multiply both sides of the equation by 22.
2(12⋅9.8t2)=2⋅10.42(12⋅9.8t2)=2⋅10.4
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify 2(12⋅9.8t2)2(12⋅9.8t2).
Step 3.1.1.1
Combine 1212 and 9.8t29.8t2.
29.8t22=2⋅10.429.8t22=2⋅10.4
Step 3.1.1.2
Cancel the common factor of 22.
Step 3.1.1.2.1
Cancel the common factor.
29.8t22=2⋅10.4
Step 3.1.1.2.2
Rewrite the expression.
9.8t2=2⋅10.4
9.8t2=2⋅10.4
9.8t2=2⋅10.4
9.8t2=2⋅10.4
Step 3.2
Simplify the right side.
Step 3.2.1
Multiply 2 by 10.4.
9.8t2=20.8
9.8t2=20.8
9.8t2=20.8
Step 4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(9.8t2)=ln(20.8)
Step 5
Expand ln(9.8t2) by moving t2 outside the logarithm.
t2ln(9.8)=ln(20.8)
Step 6
Step 6.1
Divide each term in t2ln(9.8)=ln(20.8) by ln(9.8).
t2ln(9.8)ln(9.8)=ln(20.8)ln(9.8)
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of ln(9.8).
Step 6.2.1.1
Cancel the common factor.
t2ln(9.8)ln(9.8)=ln(20.8)ln(9.8)
Step 6.2.1.2
Divide t2 by 1.
t2=ln(20.8)ln(9.8)
t2=ln(20.8)ln(9.8)
t2=ln(20.8)ln(9.8)
t2=ln(20.8)ln(9.8)
Step 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
t=±√ln(20.8)ln(9.8)
Step 8
Step 8.1
Rewrite √ln(20.8)ln(9.8) as √ln(20.8)√ln(9.8).
t=±√ln(20.8)√ln(9.8)
Step 8.2
Multiply √ln(20.8)√ln(9.8) by √ln(9.8)√ln(9.8).
t=±√ln(20.8)√ln(9.8)⋅√ln(9.8)√ln(9.8)
Step 8.3
Combine and simplify the denominator.
Step 8.3.1
Multiply √ln(20.8)√ln(9.8) by √ln(9.8)√ln(9.8).
t=±√ln(20.8)√ln(9.8)√ln(9.8)√ln(9.8)
Step 8.3.2
Raise √ln(9.8) to the power of 1.
t=±√ln(20.8)√ln(9.8)√ln(9.8)1√ln(9.8)
Step 8.3.3
Raise √ln(9.8) to the power of 1.
t=±√ln(20.8)√ln(9.8)√ln(9.8)1√ln(9.8)1
Step 8.3.4
Use the power rule aman=am+n to combine exponents.
t=±√ln(20.8)√ln(9.8)√ln(9.8)1+1
Step 8.3.5
Add 1 and 1.
t=±√ln(20.8)√ln(9.8)√ln(9.8)2
Step 8.3.6
Rewrite √ln(9.8)2 as ln(9.8).
Step 8.3.6.1
Use n√ax=axn to rewrite √ln(9.8) as ln(9.8)12.
t=±√ln(20.8)√ln(9.8)(ln(9.8)12)2
Step 8.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
t=±√ln(20.8)√ln(9.8)ln(9.8)12⋅2
Step 8.3.6.3
Combine 12 and 2.
t=±√ln(20.8)√ln(9.8)ln(9.8)22
Step 8.3.6.4
Cancel the common factor of 2.
Step 8.3.6.4.1
Cancel the common factor.
t=±√ln(20.8)√ln(9.8)ln(9.8)22
Step 8.3.6.4.2
Rewrite the expression.
t=±√ln(20.8)√ln(9.8)ln1(9.8)
t=±√ln(20.8)√ln(9.8)ln1(9.8)
Step 8.3.6.5
Simplify.
t=±√ln(20.8)√ln(9.8)ln(9.8)
t=±√ln(20.8)√ln(9.8)ln(9.8)
t=±√ln(20.8)√ln(9.8)ln(9.8)
Step 8.4
Combine using the product rule for radicals.
t=±√ln(20.8)ln(9.8)ln(9.8)
t=±√ln(20.8)ln(9.8)ln(9.8)
Step 9
Step 9.1
First, use the positive value of the ± to find the first solution.
t=√ln(20.8)ln(9.8)ln(9.8)
Step 9.2
Next, use the negative value of the ± to find the second solution.
t=-√ln(20.8)ln(9.8)ln(9.8)
Step 9.3
The complete solution is the result of both the positive and negative portions of the solution.
t=√ln(20.8)ln(9.8)ln(9.8),-√ln(20.8)ln(9.8)ln(9.8)
t=√ln(20.8)ln(9.8)ln(9.8),-√ln(20.8)ln(9.8)ln(9.8)
Step 10
The result can be shown in multiple forms.
Exact Form:
t=√ln(20.8)ln(9.8)ln(9.8),-√ln(20.8)ln(9.8)ln(9.8)
Decimal Form:
t=1.15313931…,-1.15313931…