Basic Math Examples

Solve for W Z = square root of R^2+1/(WL)
Z=R2+1WLZ=R2+1WL
Step 1
Rewrite the equation as R2+1WL=ZR2+1WL=Z.
R2+1WL=ZR2+1WL=Z
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
R2+1WL2=Z2R2+1WL2=Z2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axnnax=axn to rewrite R2+1WLR2+1WL as (R2+1WL)12(R2+1WL)12.
((R2+1WL)12)2=Z2((R2+1WL)12)2=Z2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify ((R2+1WL)12)2((R2+1WL)12)2.
Tap for more steps...
Step 3.2.1.1
Multiply the exponents in ((R2+1WL)12)2((R2+1WL)12)2.
Tap for more steps...
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(R2+1WL)122=Z2(R2+1WL)122=Z2
Step 3.2.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
(R2+1WL)122=Z2
Step 3.2.1.1.2.2
Rewrite the expression.
(R2+1WL)1=Z2
(R2+1WL)1=Z2
(R2+1WL)1=Z2
Step 3.2.1.2
Simplify.
R2+1WL=Z2
R2+1WL=Z2
R2+1WL=Z2
R2+1WL=Z2
Step 4
Solve for W.
Tap for more steps...
Step 4.1
Subtract R2 from both sides of the equation.
1WL=Z2-R2
Step 4.2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 4.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
WL,1,1
Step 4.2.2
The LCM of one and any expression is the expression.
WL
WL
Step 4.3
Multiply each term in 1WL=Z2-R2 by WL to eliminate the fractions.
Tap for more steps...
Step 4.3.1
Multiply each term in 1WL=Z2-R2 by WL.
1WL(WL)=Z2(WL)-R2(WL)
Step 4.3.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.1
Cancel the common factor of WL.
Tap for more steps...
Step 4.3.2.1.1
Cancel the common factor.
1WL(WL)=Z2(WL)-R2(WL)
Step 4.3.2.1.2
Rewrite the expression.
1=Z2(WL)-R2(WL)
1=Z2(WL)-R2(WL)
1=Z2(WL)-R2(WL)
Step 4.3.3
Simplify the right side.
Tap for more steps...
Step 4.3.3.1
Remove parentheses.
1=Z2WL-R2WL
1=Z2WL-R2WL
1=Z2WL-R2WL
Step 4.4
Solve the equation.
Tap for more steps...
Step 4.4.1
Rewrite the equation as Z2WL-R2WL=1.
Z2WL-R2WL=1
Step 4.4.2
Factor WL out of Z2WL-R2WL.
Tap for more steps...
Step 4.4.2.1
Factor WL out of Z2WL.
WL(Z2)-R2WL=1
Step 4.4.2.2
Factor WL out of -R2WL.
WL(Z2)+WL(-R2)=1
Step 4.4.2.3
Factor WL out of WL(Z2)+WL(-R2).
WL(Z2-R2)=1
WL(Z2-R2)=1
Step 4.4.3
Factor.
Tap for more steps...
Step 4.4.3.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=Z and b=R.
WL((Z+R)(Z-R))=1
Step 4.4.3.2
Remove unnecessary parentheses.
WL(Z+R)(Z-R)=1
WL(Z+R)(Z-R)=1
Step 4.4.4
Divide each term in WL(Z+R)(Z-R)=1 by L(Z+R)(Z-R) and simplify.
Tap for more steps...
Step 4.4.4.1
Divide each term in WL(Z+R)(Z-R)=1 by L(Z+R)(Z-R).
WL(Z+R)(Z-R)L(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2
Simplify the left side.
Tap for more steps...
Step 4.4.4.2.1
Cancel the common factor of L.
Tap for more steps...
Step 4.4.4.2.1.1
Cancel the common factor.
WL(Z+R)(Z-R)L(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2.1.2
Rewrite the expression.
(W(Z+R))(Z-R)(Z+R)(Z-R)=1L(Z+R)(Z-R)
(W(Z+R))(Z-R)(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2.2
Cancel the common factor of Z+R.
Tap for more steps...
Step 4.4.4.2.2.1
Cancel the common factor.
W(Z+R)(Z-R)(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2.2.2
Rewrite the expression.
(W)(Z-R)Z-R=1L(Z+R)(Z-R)
(W)(Z-R)Z-R=1L(Z+R)(Z-R)
Step 4.4.4.2.3
Cancel the common factor of Z-R.
Tap for more steps...
Step 4.4.4.2.3.1
Cancel the common factor.
W(Z-R)Z-R=1L(Z+R)(Z-R)
Step 4.4.4.2.3.2
Divide W by 1.
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
 [x2  12  π  xdx ]