Enter a problem...
Basic Math Examples
Z=√R2+1WLZ=√R2+1WL
Step 1
Rewrite the equation as √R2+1WL=Z√R2+1WL=Z.
√R2+1WL=Z√R2+1WL=Z
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√R2+1WL2=Z2√R2+1WL2=Z2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √R2+1WL√R2+1WL as (R2+1WL)12(R2+1WL)12.
((R2+1WL)12)2=Z2((R2+1WL)12)2=Z2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((R2+1WL)12)2((R2+1WL)12)2.
Step 3.2.1.1
Multiply the exponents in ((R2+1WL)12)2((R2+1WL)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(R2+1WL)12⋅2=Z2(R2+1WL)12⋅2=Z2
Step 3.2.1.1.2
Cancel the common factor of 22.
Step 3.2.1.1.2.1
Cancel the common factor.
(R2+1WL)12⋅2=Z2
Step 3.2.1.1.2.2
Rewrite the expression.
(R2+1WL)1=Z2
(R2+1WL)1=Z2
(R2+1WL)1=Z2
Step 3.2.1.2
Simplify.
R2+1WL=Z2
R2+1WL=Z2
R2+1WL=Z2
R2+1WL=Z2
Step 4
Step 4.1
Subtract R2 from both sides of the equation.
1WL=Z2-R2
Step 4.2
Find the LCD of the terms in the equation.
Step 4.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
WL,1,1
Step 4.2.2
The LCM of one and any expression is the expression.
WL
WL
Step 4.3
Multiply each term in 1WL=Z2-R2 by WL to eliminate the fractions.
Step 4.3.1
Multiply each term in 1WL=Z2-R2 by WL.
1WL(WL)=Z2(WL)-R2(WL)
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of WL.
Step 4.3.2.1.1
Cancel the common factor.
1WL(WL)=Z2(WL)-R2(WL)
Step 4.3.2.1.2
Rewrite the expression.
1=Z2(WL)-R2(WL)
1=Z2(WL)-R2(WL)
1=Z2(WL)-R2(WL)
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Remove parentheses.
1=Z2WL-R2WL
1=Z2WL-R2WL
1=Z2WL-R2WL
Step 4.4
Solve the equation.
Step 4.4.1
Rewrite the equation as Z2WL-R2WL=1.
Z2WL-R2WL=1
Step 4.4.2
Factor WL out of Z2WL-R2WL.
Step 4.4.2.1
Factor WL out of Z2WL.
WL(Z2)-R2WL=1
Step 4.4.2.2
Factor WL out of -R2WL.
WL(Z2)+WL(-R2)=1
Step 4.4.2.3
Factor WL out of WL(Z2)+WL(-R2).
WL(Z2-R2)=1
WL(Z2-R2)=1
Step 4.4.3
Factor.
Step 4.4.3.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=Z and b=R.
WL((Z+R)(Z-R))=1
Step 4.4.3.2
Remove unnecessary parentheses.
WL(Z+R)(Z-R)=1
WL(Z+R)(Z-R)=1
Step 4.4.4
Divide each term in WL(Z+R)(Z-R)=1 by L(Z+R)(Z-R) and simplify.
Step 4.4.4.1
Divide each term in WL(Z+R)(Z-R)=1 by L(Z+R)(Z-R).
WL(Z+R)(Z-R)L(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2
Simplify the left side.
Step 4.4.4.2.1
Cancel the common factor of L.
Step 4.4.4.2.1.1
Cancel the common factor.
WL(Z+R)(Z-R)L(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2.1.2
Rewrite the expression.
(W(Z+R))(Z-R)(Z+R)(Z-R)=1L(Z+R)(Z-R)
(W(Z+R))(Z-R)(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2.2
Cancel the common factor of Z+R.
Step 4.4.4.2.2.1
Cancel the common factor.
W(Z+R)(Z-R)(Z+R)(Z-R)=1L(Z+R)(Z-R)
Step 4.4.4.2.2.2
Rewrite the expression.
(W)(Z-R)Z-R=1L(Z+R)(Z-R)
(W)(Z-R)Z-R=1L(Z+R)(Z-R)
Step 4.4.4.2.3
Cancel the common factor of Z-R.
Step 4.4.4.2.3.1
Cancel the common factor.
W(Z-R)Z-R=1L(Z+R)(Z-R)
Step 4.4.4.2.3.2
Divide W by 1.
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)
W=1L(Z+R)(Z-R)