Enter a problem...
Basic Math Examples
36=(8w2+10w)36=(8w2+10w)
Step 1
Rewrite the equation as 8w2+10w=368w2+10w=36.
8w2+10w=368w2+10w=36
Step 2
Subtract 3636 from both sides of the equation.
8w2+10w-36=08w2+10w−36=0
Step 3
Step 3.1
Factor 22 out of 8w28w2.
2(4w2)+10w-36=02(4w2)+10w−36=0
Step 3.2
Factor 22 out of 10w10w.
2(4w2)+2(5w)-36=02(4w2)+2(5w)−36=0
Step 3.3
Factor 22 out of -36−36.
2(4w2)+2(5w)+2(-18)=02(4w2)+2(5w)+2(−18)=0
Step 3.4
Factor 22 out of 2(4w2)+2(5w)2(4w2)+2(5w).
2(4w2+5w)+2(-18)=02(4w2+5w)+2(−18)=0
Step 3.5
Factor 22 out of 2(4w2+5w)+2(-18)2(4w2+5w)+2(−18).
2(4w2+5w-18)=02(4w2+5w−18)=0
2(4w2+5w-18)=02(4w2+5w−18)=0
Step 4
Step 4.1
Divide each term in 2(4w2+5w-18)=02(4w2+5w−18)=0 by 22.
2(4w2+5w-18)2=022(4w2+5w−18)2=02
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of 22.
Step 4.2.1.1
Cancel the common factor.
2(4w2+5w-18)2=02
Step 4.2.1.2
Divide 4w2+5w-18 by 1.
4w2+5w-18=02
4w2+5w-18=02
4w2+5w-18=02
Step 4.3
Simplify the right side.
Step 4.3.1
Divide 0 by 2.
4w2+5w-18=0
4w2+5w-18=0
4w2+5w-18=0
Step 5
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 6
Substitute the values a=4, b=5, and c=-18 into the quadratic formula and solve for w.
-5±√52-4⋅(4⋅-18)2⋅4
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Raise 5 to the power of 2.
w=-5±√25-4⋅4⋅-182⋅4
Step 7.1.2
Multiply -4⋅4⋅-18.
Step 7.1.2.1
Multiply -4 by 4.
w=-5±√25-16⋅-182⋅4
Step 7.1.2.2
Multiply -16 by -18.
w=-5±√25+2882⋅4
w=-5±√25+2882⋅4
Step 7.1.3
Add 25 and 288.
w=-5±√3132⋅4
w=-5±√3132⋅4
Step 7.2
Multiply 2 by 4.
w=-5±√3138
w=-5±√3138
Step 8
The final answer is the combination of both solutions.
w=-5-√3138,-5+√3138
Step 9
The result can be shown in multiple forms.
Exact Form:
w=-5-√3138,-5+√3138
Decimal Form:
w=1.58647575…,-2.83647575…