Basic Math Examples

Solve for w 36=(8w^2+10w)
36=(8w2+10w)36=(8w2+10w)
Step 1
Rewrite the equation as 8w2+10w=368w2+10w=36.
8w2+10w=368w2+10w=36
Step 2
Subtract 3636 from both sides of the equation.
8w2+10w-36=08w2+10w36=0
Step 3
Factor 22 out of 8w2+10w-368w2+10w36.
Tap for more steps...
Step 3.1
Factor 22 out of 8w28w2.
2(4w2)+10w-36=02(4w2)+10w36=0
Step 3.2
Factor 22 out of 10w10w.
2(4w2)+2(5w)-36=02(4w2)+2(5w)36=0
Step 3.3
Factor 22 out of -3636.
2(4w2)+2(5w)+2(-18)=02(4w2)+2(5w)+2(18)=0
Step 3.4
Factor 22 out of 2(4w2)+2(5w)2(4w2)+2(5w).
2(4w2+5w)+2(-18)=02(4w2+5w)+2(18)=0
Step 3.5
Factor 22 out of 2(4w2+5w)+2(-18)2(4w2+5w)+2(18).
2(4w2+5w-18)=02(4w2+5w18)=0
2(4w2+5w-18)=02(4w2+5w18)=0
Step 4
Divide each term in 2(4w2+5w-18)=02(4w2+5w18)=0 by 22 and simplify.
Tap for more steps...
Step 4.1
Divide each term in 2(4w2+5w-18)=02(4w2+5w18)=0 by 22.
2(4w2+5w-18)2=022(4w2+5w18)2=02
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
2(4w2+5w-18)2=02
Step 4.2.1.2
Divide 4w2+5w-18 by 1.
4w2+5w-18=02
4w2+5w-18=02
4w2+5w-18=02
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide 0 by 2.
4w2+5w-18=0
4w2+5w-18=0
4w2+5w-18=0
Step 5
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 6
Substitute the values a=4, b=5, and c=-18 into the quadratic formula and solve for w.
-5±52-4(4-18)24
Step 7
Simplify.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Raise 5 to the power of 2.
w=-5±25-44-1824
Step 7.1.2
Multiply -44-18.
Tap for more steps...
Step 7.1.2.1
Multiply -4 by 4.
w=-5±25-16-1824
Step 7.1.2.2
Multiply -16 by -18.
w=-5±25+28824
w=-5±25+28824
Step 7.1.3
Add 25 and 288.
w=-5±31324
w=-5±31324
Step 7.2
Multiply 2 by 4.
w=-5±3138
w=-5±3138
Step 8
The final answer is the combination of both solutions.
w=-5-3138,-5+3138
Step 9
The result can be shown in multiple forms.
Exact Form:
w=-5-3138,-5+3138
Decimal Form:
w=1.58647575,-2.83647575
 [x2  12  π  xdx ]