Basic Math Examples

Solve for v v=4/3*((3.14)(18units)^2)
v=43((3.14)(18units)2)
Step 1
Multiply 3.14 by (18units)2.
v=43(3.14(18units)2)
Step 2
Remove parentheses.
v=43(3.14(18units)2)
Step 3
Simplify 43(3.14(18units)2).
Tap for more steps...
Step 3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.1.1
Apply the product rule to 18units.
v=43(3.14((18unit)2s2))
Step 3.1.2
Apply the product rule to 18unit.
v=43(3.14((18uni)2t2s2))
Step 3.1.3
Apply the product rule to 18uni.
v=43(3.14((18un)2i2t2s2))
Step 3.1.4
Apply the product rule to 18un.
v=43(3.14((18u)2n2i2t2s2))
Step 3.1.5
Apply the product rule to 18u.
v=43(3.14(182u2n2i2t2s2))
v=43(3.14(182u2n2i2t2s2))
Step 3.2
Raise 18 to the power of 2.
v=43(3.14(324u2n2i2t2s2))
Step 3.3
Rewrite i2 as -1.
v=43(3.14(324u2n2-1t2s2))
Step 3.4
Multiply -1 by 324.
v=43(3.14(-324u2n2t2s2))
Step 3.5
Multiply -324 by 3.14.
v=43(-1017.36(u2n2t2s2))
Step 3.6
Multiply 43(-1017.36u2n2t2s2).
Tap for more steps...
Step 3.6.1
Combine -1017.36 and 43.
v=-1017.3643(u2n2t2s2)
Step 3.6.2
Multiply -1017.36 by 4.
v=-4069.443(u2n2t2s2)
Step 3.6.3
Combine u2 and -4069.443.
v=u2-4069.443(n2t2s2)
Step 3.6.4
Combine n2 and u2-4069.443.
v=n2(u2-4069.44)3(t2s2)
Step 3.6.5
Combine t2 and n2(u2-4069.44)3.
v=t2(n2(u2-4069.44))3s2
Step 3.6.6
Combine t2(n2(u2-4069.44))3 and s2.
v=t2(n2(u2-4069.44))s23
v=t2(n2(u2-4069.44))s23
Step 3.7
Simplify the expression.
Tap for more steps...
Step 3.7.1
Move -4069.44 to the left of t2n2u2.
v=-4069.44(t2n2u2)s23
Step 3.7.2
Move the negative in front of the fraction.
v=-4069.44t2n2u2s23
v=-4069.44t2n2u2s23
Step 3.8
Factor 4069.44 out of 4069.44t2n2u2s2.
v=-4069.44(t2n2u2s2)3
Step 3.9
Factor 3 out of 3.
v=-4069.44(t2n2u2s2)3(1)
Step 3.10
Separate fractions.
v=-(4069.443t2n2u2s21)
Step 3.11
Divide 4069.44 by 3.
v=-(1356.48t2n2u2s21)
Step 3.12
Divide t2n2u2s2 by 1.
v=-(1356.48(t2n2u2s2))
Step 3.13
Multiply 1356.48 by -1.
v=-1356.48t2n2u2s2
v=-1356.48t2n2u2s2
 [x2  12  π  xdx ]