Basic Math Examples

Solve for v 2.56=(v^2)/(9.81(0.79))
2.56=v29.81(0.79)2.56=v29.81(0.79)
Step 1
Rewrite the equation as v29.81(0.79)=2.56v29.81(0.79)=2.56.
v29.81(0.79)=2.56v29.81(0.79)=2.56
Step 2
Multiply both sides of the equation by 9.81(0.79)9.81(0.79).
9.810.79v29.810.79=9.81(0.79)2.569.810.79v29.810.79=9.81(0.79)2.56
Step 3
Simplify both sides of the equation.
Tap for more steps...
Step 3.1
Simplify the left side.
Tap for more steps...
Step 3.1.1
Simplify 9.810.79v29.810.799.810.79v29.810.79.
Tap for more steps...
Step 3.1.1.1
Multiply.
Tap for more steps...
Step 3.1.1.1.1
Multiply 9.819.81 by 0.790.79.
7.7499v29.810.79=9.81(0.79)2.567.7499v29.810.79=9.81(0.79)2.56
Step 3.1.1.1.2
Multiply 9.819.81 by 0.790.79.
7.7499v27.7499=9.81(0.79)2.567.7499v27.7499=9.81(0.79)2.56
7.7499v27.7499=9.81(0.79)2.567.7499v27.7499=9.81(0.79)2.56
Step 3.1.1.2
Cancel the common factor of 7.74997.7499.
Tap for more steps...
Step 3.1.1.2.1
Cancel the common factor.
7.7499v27.7499=9.81(0.79)2.56
Step 3.1.1.2.2
Rewrite the expression.
v2=9.81(0.79)2.56
v2=9.81(0.79)2.56
v2=9.81(0.79)2.56
v2=9.81(0.79)2.56
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Multiply 9.81(0.79)2.56.
Tap for more steps...
Step 3.2.1.1
Multiply 9.81 by 0.79.
v2=7.74992.56
Step 3.2.1.2
Multiply 7.7499 by 2.56.
v2=19.839744
v2=19.839744
v2=19.839744
v2=19.839744
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
v=±19.839744
Step 5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.1
First, use the positive value of the ± to find the first solution.
v=19.839744
Step 5.2
Next, use the negative value of the ± to find the second solution.
v=-19.839744
Step 5.3
The complete solution is the result of both the positive and negative portions of the solution.
v=19.839744,-19.839744
v=19.839744,-19.839744
Step 6
The result can be shown in multiple forms.
Exact Form:
v=19.839744,-19.839744
Decimal Form:
v=4.45418275,-4.45418275
 [x2  12  π  xdx ]