Enter a problem...
Basic Math Examples
(423-1415)-(135+715)(423−1415)−(135+715)
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
4+23-1415-(135+715)
Step 1.2
Add 4 and 23.
Step 1.2.1
To write 4 as a fraction with a common denominator, multiply by 33.
4⋅33+23-1415-(135+715)
Step 1.2.2
Combine 4 and 33.
4⋅33+23-1415-(135+715)
Step 1.2.3
Combine the numerators over the common denominator.
4⋅3+23-1415-(135+715)
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 4 by 3.
12+23-1415-(135+715)
Step 1.2.4.2
Add 12 and 2.
143-1415-(135+715)
143-1415-(135+715)
143-1415-(135+715)
143-1415-(135+715)
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
143-(1+415)-(135+715)
Step 2.2
Add 1 and 415.
Step 2.2.1
Write 1 as a fraction with a common denominator.
143-(1515+415)-(135+715)
Step 2.2.2
Combine the numerators over the common denominator.
143-15+415-(135+715)
Step 2.2.3
Add 15 and 4.
143-1915-(135+715)
143-1915-(135+715)
143-1915-(135+715)
Step 3
Step 3.1
A mixed number is an addition of its whole and fractional parts.
143-1915-(1+35+715)
Step 3.2
Add 1 and 35.
Step 3.2.1
Write 1 as a fraction with a common denominator.
143-1915-(55+35+715)
Step 3.2.2
Combine the numerators over the common denominator.
143-1915-(5+35+715)
Step 3.2.3
Add 5 and 3.
143-1915-(85+715)
143-1915-(85+715)
143-1915-(85+715)
Step 4
Step 4.1
Multiply 143 by 55.
143⋅55-1915-(85+715)
Step 4.2
Multiply 143 by 55.
14⋅53⋅5-1915-(85+715)
Step 4.3
Write -(85+715) as a fraction with denominator 1.
14⋅53⋅5-1915+-(85+715)1
Step 4.4
Multiply -(85+715)1 by 1515.
14⋅53⋅5-1915+-(85+715)1⋅1515
Step 4.5
Multiply -(85+715)1 by 1515.
14⋅53⋅5-1915+-(85+715)⋅1515
Step 4.6
Multiply 3 by 5.
14⋅515-1915+-(85+715)⋅1515
14⋅515-1915+-(85+715)⋅1515
Step 5
Combine the numerators over the common denominator.
14⋅5-19-(85+715)⋅1515
Step 6
Step 6.1
Multiply 14 by 5.
70-19-(85+715)⋅1515
Step 6.2
To write 85 as a fraction with a common denominator, multiply by 33.
70-19-(85⋅33+715)⋅1515
Step 6.3
Write each expression with a common denominator of 15, by multiplying each by an appropriate factor of 1.
Step 6.3.1
Multiply 85 by 33.
70-19-(8⋅35⋅3+715)⋅1515
Step 6.3.2
Multiply 5 by 3.
70-19-(8⋅315+715)⋅1515
70-19-(8⋅315+715)⋅1515
Step 6.4
Combine the numerators over the common denominator.
70-19-8⋅3+715⋅1515
Step 6.5
Simplify the numerator.
Step 6.5.1
Multiply 8 by 3.
70-19-24+715⋅1515
Step 6.5.2
Add 24 and 7.
70-19-3115⋅1515
70-19-3115⋅1515
Step 6.6
Cancel the common factor of 15.
Step 6.6.1
Move the leading negative in -3115 into the numerator.
70-19+-3115⋅1515
Step 6.6.2
Cancel the common factor.
70-19+-3115⋅1515
Step 6.6.3
Rewrite the expression.
70-19-3115
70-19-3115
70-19-3115
Step 7
Step 7.1
Subtract 19 from 70.
51-3115
Step 7.2
Subtract 31 from 51.
2015
Step 7.3
Cancel the common factor of 20 and 15.
Step 7.3.1
Factor 5 out of 20.
5(4)15
Step 7.3.2
Cancel the common factors.
Step 7.3.2.1
Factor 5 out of 15.
5⋅45⋅3
Step 7.3.2.2
Cancel the common factor.
5⋅45⋅3
Step 7.3.2.3
Rewrite the expression.
43
43
43
43
Step 8
The result can be shown in multiple forms.
Exact Form:
43
Decimal Form:
1.‾3
Mixed Number Form:
113