Basic Math Examples

Simplify (3-(9m-1)/(m+3m^2))*(m+1+4/(9m-3))
(3-9m-1m+3m2)(m+1+49m-3)(39m1m+3m2)(m+1+49m3)
Step 1
Factor mm out of m+3m2m+3m2.
Tap for more steps...
Step 1.1
Raise mm to the power of 11.
(3-9m-1m1+3m2)(m+1+49m-3)(39m1m1+3m2)(m+1+49m3)
Step 1.2
Factor mm out of m1m1.
(3-9m-1m1+3m2)(m+1+49m-3)(39m1m1+3m2)(m+1+49m3)
Step 1.3
Factor mm out of 3m23m2.
(3-9m-1m1+m(3m))(m+1+49m-3)(39m1m1+m(3m))(m+1+49m3)
Step 1.4
Factor mm out of m1+m(3m)m1+m(3m).
(3-9m-1m(1+3m))(m+1+49m-3)(39m1m(1+3m))(m+1+49m3)
(3-9m-1m(1+3m))(m+1+49m-3)(39m1m(1+3m))(m+1+49m3)
Step 2
To write 33 as a fraction with a common denominator, multiply by m(1+3m)m(1+3m)m(1+3m)m(1+3m).
(3m(1+3m)m(1+3m)-9m-1m(1+3m))(m+1+49m-3)(3m(1+3m)m(1+3m)9m1m(1+3m))(m+1+49m3)
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Combine 33 and m(1+3m)m(1+3m)m(1+3m)m(1+3m).
(3(m(1+3m))m(1+3m)-9m-1m(1+3m))(m+1+49m-3)(3(m(1+3m))m(1+3m)9m1m(1+3m))(m+1+49m3)
Step 3.2
Combine the numerators over the common denominator.
3(m(1+3m))-(9m-1)m(1+3m)(m+1+49m-3)3(m(1+3m))(9m1)m(1+3m)(m+1+49m3)
3(m(1+3m))-(9m-1)m(1+3m)(m+1+49m-3)3(m(1+3m))(9m1)m(1+3m)(m+1+49m3)
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Apply the distributive property.
3(m1+m(3m))-(9m-1)m(1+3m)(m+1+49m-3)3(m1+m(3m))(9m1)m(1+3m)(m+1+49m3)
Step 4.2
Multiply mm by 11.
3(m+m(3m))-(9m-1)m(1+3m)(m+1+49m-3)3(m+m(3m))(9m1)m(1+3m)(m+1+49m3)
Step 4.3
Rewrite using the commutative property of multiplication.
3(m+3mm)-(9m-1)m(1+3m)(m+1+49m-3)3(m+3mm)(9m1)m(1+3m)(m+1+49m3)
Step 4.4
Multiply mm by mm by adding the exponents.
Tap for more steps...
Step 4.4.1
Move mm.
3(m+3(mm))-(9m-1)m(1+3m)(m+1+49m-3)3(m+3(mm))(9m1)m(1+3m)(m+1+49m3)
Step 4.4.2
Multiply mm by mm.
3(m+3m2)-(9m-1)m(1+3m)(m+1+49m-3)3(m+3m2)(9m1)m(1+3m)(m+1+49m3)
3(m+3m2)-(9m-1)m(1+3m)(m+1+49m-3)3(m+3m2)(9m1)m(1+3m)(m+1+49m3)
Step 4.5
Apply the distributive property.
3m+3(3m2)-(9m-1)m(1+3m)(m+1+49m-3)3m+3(3m2)(9m1)m(1+3m)(m+1+49m3)
Step 4.6
Multiply 33 by 33.
3m+9m2-(9m-1)m(1+3m)(m+1+49m-3)3m+9m2(9m1)m(1+3m)(m+1+49m3)
Step 4.7
Apply the distributive property.
3m+9m2-(9m)--1m(1+3m)(m+1+49m-3)3m+9m2(9m)1m(1+3m)(m+1+49m3)
Step 4.8
Multiply 99 by -11.
3m+9m2-9m--1m(1+3m)(m+1+49m-3)3m+9m29m1m(1+3m)(m+1+49m3)
Step 4.9
Multiply -11 by -11.
3m+9m2-9m+1m(1+3m)(m+1+49m-3)3m+9m29m+1m(1+3m)(m+1+49m3)
Step 4.10
Subtract 9m9m from 3m3m.
9m2-6m+1m(1+3m)(m+1+49m-3)9m26m+1m(1+3m)(m+1+49m3)
Step 4.11
Factor using the perfect square rule.
Tap for more steps...
Step 4.11.1
Rewrite 9m29m2 as (3m)2(3m)2.
(3m)2-6m+1m(1+3m)(m+1+49m-3)(3m)26m+1m(1+3m)(m+1+49m3)
Step 4.11.2
Rewrite 11 as 1212.
(3m)2-6m+12m(1+3m)(m+1+49m-3)(3m)26m+12m(1+3m)(m+1+49m3)
Step 4.11.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6m=2(3m)16m=2(3m)1
Step 4.11.4
Rewrite the polynomial.
(3m)2-2(3m)1+12m(1+3m)(m+1+49m-3)(3m)22(3m)1+12m(1+3m)(m+1+49m3)
Step 4.11.5
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a22ab+b2=(ab)2, where a=3ma=3m and b=1b=1.
(3m-1)2m(1+3m)(m+1+49m-3)(3m1)2m(1+3m)(m+1+49m3)
(3m-1)2m(1+3m)(m+1+49m-3)(3m1)2m(1+3m)(m+1+49m3)
(3m-1)2m(1+3m)(m+1+49m-3)(3m1)2m(1+3m)(m+1+49m3)
Step 5
Simplify terms.
Tap for more steps...
Step 5.1
Factor 33 out of 9m-39m3.
Tap for more steps...
Step 5.1.1
Factor 33 out of 9m9m.
(3m-1)2m(1+3m)(m+1+43(3m)-3)(3m1)2m(1+3m)(m+1+43(3m)3)
Step 5.1.2
Factor 33 out of -33.
(3m-1)2m(1+3m)(m+1+43(3m)+3(-1))(3m1)2m(1+3m)(m+1+43(3m)+3(1))
Step 5.1.3
Factor 33 out of 3(3m)+3(-1)3(3m)+3(1).
(3m-1)2m(1+3m)(m+1+43(3m-1))(3m1)2m(1+3m)(m+1+43(3m1))
(3m-1)2m(1+3m)(m+1+43(3m-1))(3m1)2m(1+3m)(m+1+43(3m1))
Step 5.2
Multiply (3m-1)2m(1+3m)(3m1)2m(1+3m) by m+1+43(3m-1)m+1+43(3m1).
(3m-1)2(m+1+43(3m-1))m(1+3m)(3m1)2(m+1+43(3m1))m(1+3m)
(3m-1)2(m+1+43(3m-1))m(1+3m)(3m1)2(m+1+43(3m1))m(1+3m)
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
To write mm as a fraction with a common denominator, multiply by 3(3m-1)3(3m-1)3(3m1)3(3m1).
(3m-1)2(m3(3m-1)3(3m-1)+43(3m-1)+1)m(1+3m)(3m1)2(m3(3m1)3(3m1)+43(3m1)+1)m(1+3m)
Step 6.2
Combine mm and 3(3m-1)3(3m-1)3(3m1)3(3m1).
(3m-1)2(m(3(3m-1))3(3m-1)+43(3m-1)+1)m(1+3m)(3m1)2(m(3(3m1))3(3m1)+43(3m1)+1)m(1+3m)
Step 6.3
Combine the numerators over the common denominator.
(3m-1)2(m(3(3m-1))+43(3m-1)+1)m(1+3m)(3m1)2(m(3(3m1))+43(3m1)+1)m(1+3m)
Step 6.4
Simplify the numerator.
Tap for more steps...
Step 6.4.1
Rewrite using the commutative property of multiplication.
(3m-1)2(3m(3m-1)+43(3m-1)+1)m(1+3m)(3m1)2(3m(3m1)+43(3m1)+1)m(1+3m)
Step 6.4.2
Apply the distributive property.
(3m-1)2(3m(3m)+3m-1+43(3m-1)+1)m(1+3m)(3m1)2(3m(3m)+3m1+43(3m1)+1)m(1+3m)
Step 6.4.3
Rewrite using the commutative property of multiplication.
(3m-1)2(33mm+3m-1+43(3m-1)+1)m(1+3m)(3m1)2(33mm+3m1+43(3m1)+1)m(1+3m)
Step 6.4.4
Multiply -11 by 33.
(3m-1)2(33mm-3m+43(3m-1)+1)m(1+3m)(3m1)2(33mm3m+43(3m1)+1)m(1+3m)
Step 6.4.5
Simplify each term.
Tap for more steps...
Step 6.4.5.1
Multiply mm by mm by adding the exponents.
Tap for more steps...
Step 6.4.5.1.1
Move mm.
(3m-1)2(33(mm)-3m+43(3m-1)+1)m(1+3m)(3m1)2(33(mm)3m+43(3m1)+1)m(1+3m)
Step 6.4.5.1.2
Multiply mm by mm.
(3m-1)2(33m2-3m+43(3m-1)+1)m(1+3m)(3m1)2(33m23m+43(3m1)+1)m(1+3m)
(3m-1)2(33m2-3m+43(3m-1)+1)m(1+3m)(3m1)2(33m23m+43(3m1)+1)m(1+3m)
Step 6.4.5.2
Multiply 33 by 33.
(3m-1)2(9m2-3m+43(3m-1)+1)m(1+3m)(3m1)2(9m23m+43(3m1)+1)m(1+3m)
(3m-1)2(9m2-3m+43(3m-1)+1)m(1+3m)(3m1)2(9m23m+43(3m1)+1)m(1+3m)
(3m-1)2(9m2-3m+43(3m-1)+1)m(1+3m)(3m1)2(9m23m+43(3m1)+1)m(1+3m)
Step 6.5
Write 11 as a fraction with a common denominator.
(3m-1)2(9m2-3m+43(3m-1)+3(3m-1)3(3m-1))m(1+3m)(3m1)2(9m23m+43(3m1)+3(3m1)3(3m1))m(1+3m)
Step 6.6
Combine the numerators over the common denominator.
(3m-1)29m2-3m+4+3(3m-1)3(3m-1)m(1+3m)(3m1)29m23m+4+3(3m1)3(3m1)m(1+3m)
Step 6.7
Simplify the numerator.
Tap for more steps...
Step 6.7.1
Apply the distributive property.
(3m-1)29m2-3m+4+3(3m)+3-13(3m-1)m(1+3m)(3m1)29m23m+4+3(3m)+313(3m1)m(1+3m)
Step 6.7.2
Multiply 33 by 33.
(3m-1)29m2-3m+4+9m+3-13(3m-1)m(1+3m)(3m1)29m23m+4+9m+313(3m1)m(1+3m)
Step 6.7.3
Multiply 33 by -11.
(3m-1)29m2-3m+4+9m-33(3m-1)m(1+3m)(3m1)29m23m+4+9m33(3m1)m(1+3m)
Step 6.7.4
Add -3m3m and 9m9m.
(3m-1)29m2+6m+4-33(3m-1)m(1+3m)(3m1)29m2+6m+433(3m1)m(1+3m)
Step 6.7.5
Subtract 33 from 44.
(3m-1)29m2+6m+13(3m-1)m(1+3m)(3m1)29m2+6m+13(3m1)m(1+3m)
Step 6.7.6
Factor using the perfect square rule.
Tap for more steps...
Step 6.7.6.1
Rewrite 9m29m2 as (3m)2(3m)2.
(3m-1)2(3m)2+6m+13(3m-1)m(1+3m)(3m1)2(3m)2+6m+13(3m1)m(1+3m)
Step 6.7.6.2
Rewrite 11 as 1212.
(3m-1)2(3m)2+6m+123(3m-1)m(1+3m)(3m1)2(3m)2+6m+123(3m1)m(1+3m)
Step 6.7.6.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6m=2(3m)16m=2(3m)1
Step 6.7.6.4
Rewrite the polynomial.
(3m-1)2(3m)2+2(3m)1+123(3m-1)m(1+3m)(3m1)2(3m)2+2(3m)1+123(3m1)m(1+3m)
Step 6.7.6.5
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2, where a=3ma=3m and b=1b=1.
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m1)2(3m+1)23(3m1)m(1+3m)
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m1)2(3m+1)23(3m1)m(1+3m)
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m1)2(3m+1)23(3m1)m(1+3m)
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m1)2(3m+1)23(3m1)m(1+3m)
Step 7
Simplify terms.
Tap for more steps...
Step 7.1
Combine (3m-1)2 and (3m+1)23(3m-1).
(3m-1)2(3m+1)23(3m-1)m(1+3m)
Step 7.2
Reduce the expression (3m-1)2(3m+1)23(3m-1) by cancelling the common factors.
Tap for more steps...
Step 7.2.1
Factor 3m-1 out of (3m-1)2(3m+1)2.
(3m-1)((3m-1)(3m+1)2)3(3m-1)m(1+3m)
Step 7.2.2
Factor 3m-1 out of 3(3m-1).
(3m-1)((3m-1)(3m+1)2)(3m-1)3m(1+3m)
Step 7.2.3
Cancel the common factor.
(3m-1)((3m-1)(3m+1)2)(3m-1)3m(1+3m)
Step 7.2.4
Rewrite the expression.
(3m-1)(3m+1)23m(1+3m)
(3m-1)(3m+1)23m(1+3m)
(3m-1)(3m+1)23m(1+3m)
Step 8
Multiply the numerator by the reciprocal of the denominator.
(3m-1)(3m+1)231m(1+3m)
Step 9
Combine.
(3m-1)(3m+1)213(m(1+3m))
Step 10
Cancel the common factor of (3m+1)2 and 1+3m.
Tap for more steps...
Step 10.1
Reorder terms.
(3m-1)(3m+1)213(m(3m+1))
Step 10.2
Factor 3m+1 out of (3m-1)(3m+1)21.
(3m+1)(((3m-1)(3m+1))1)3(m(3m+1))
Step 10.3
Cancel the common factors.
Tap for more steps...
Step 10.3.1
Factor 3m+1 out of 3(m(3m+1)).
(3m+1)(((3m-1)(3m+1))1)(3m+1)(3(m))
Step 10.3.2
Cancel the common factor.
(3m+1)(((3m-1)(3m+1))1)(3m+1)(3(m))
Step 10.3.3
Rewrite the expression.
((3m-1)(3m+1))13(m)
((3m-1)(3m+1))13(m)
((3m-1)(3m+1))13(m)
Step 11
Multiply 3m-1 by 1.
(3m-1)(3m+1)3m
 [x2  12  π  xdx ]