Enter a problem...
Basic Math Examples
(3-9m-1m+3m2)⋅(m+1+49m-3)(3−9m−1m+3m2)⋅(m+1+49m−3)
Step 1
Step 1.1
Raise mm to the power of 11.
(3-9m-1m1+3m2)⋅(m+1+49m-3)(3−9m−1m1+3m2)⋅(m+1+49m−3)
Step 1.2
Factor mm out of m1m1.
(3-9m-1m⋅1+3m2)⋅(m+1+49m-3)(3−9m−1m⋅1+3m2)⋅(m+1+49m−3)
Step 1.3
Factor mm out of 3m23m2.
(3-9m-1m⋅1+m(3m))⋅(m+1+49m-3)(3−9m−1m⋅1+m(3m))⋅(m+1+49m−3)
Step 1.4
Factor mm out of m⋅1+m(3m)m⋅1+m(3m).
(3-9m-1m(1+3m))⋅(m+1+49m-3)(3−9m−1m(1+3m))⋅(m+1+49m−3)
(3-9m-1m(1+3m))⋅(m+1+49m-3)(3−9m−1m(1+3m))⋅(m+1+49m−3)
Step 2
To write 33 as a fraction with a common denominator, multiply by m(1+3m)m(1+3m)m(1+3m)m(1+3m).
(3⋅m(1+3m)m(1+3m)-9m-1m(1+3m))⋅(m+1+49m-3)(3⋅m(1+3m)m(1+3m)−9m−1m(1+3m))⋅(m+1+49m−3)
Step 3
Step 3.1
Combine 33 and m(1+3m)m(1+3m)m(1+3m)m(1+3m).
(3(m(1+3m))m(1+3m)-9m-1m(1+3m))⋅(m+1+49m-3)(3(m(1+3m))m(1+3m)−9m−1m(1+3m))⋅(m+1+49m−3)
Step 3.2
Combine the numerators over the common denominator.
3(m(1+3m))-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m(1+3m))−(9m−1)m(1+3m)⋅(m+1+49m−3)
3(m(1+3m))-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m(1+3m))−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4
Step 4.1
Apply the distributive property.
3(m⋅1+m(3m))-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m⋅1+m(3m))−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.2
Multiply mm by 11.
3(m+m(3m))-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m+m(3m))−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.3
Rewrite using the commutative property of multiplication.
3(m+3m⋅m)-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m+3m⋅m)−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.4
Multiply mm by mm by adding the exponents.
Step 4.4.1
Move mm.
3(m+3(m⋅m))-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m+3(m⋅m))−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.4.2
Multiply mm by mm.
3(m+3m2)-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m+3m2)−(9m−1)m(1+3m)⋅(m+1+49m−3)
3(m+3m2)-(9m-1)m(1+3m)⋅(m+1+49m-3)3(m+3m2)−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.5
Apply the distributive property.
3m+3(3m2)-(9m-1)m(1+3m)⋅(m+1+49m-3)3m+3(3m2)−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.6
Multiply 33 by 33.
3m+9m2-(9m-1)m(1+3m)⋅(m+1+49m-3)3m+9m2−(9m−1)m(1+3m)⋅(m+1+49m−3)
Step 4.7
Apply the distributive property.
3m+9m2-(9m)--1m(1+3m)⋅(m+1+49m-3)3m+9m2−(9m)−−1m(1+3m)⋅(m+1+49m−3)
Step 4.8
Multiply 99 by -1−1.
3m+9m2-9m--1m(1+3m)⋅(m+1+49m-3)3m+9m2−9m−−1m(1+3m)⋅(m+1+49m−3)
Step 4.9
Multiply -1−1 by -1−1.
3m+9m2-9m+1m(1+3m)⋅(m+1+49m-3)3m+9m2−9m+1m(1+3m)⋅(m+1+49m−3)
Step 4.10
Subtract 9m9m from 3m3m.
9m2-6m+1m(1+3m)⋅(m+1+49m-3)9m2−6m+1m(1+3m)⋅(m+1+49m−3)
Step 4.11
Factor using the perfect square rule.
Step 4.11.1
Rewrite 9m29m2 as (3m)2(3m)2.
(3m)2-6m+1m(1+3m)⋅(m+1+49m-3)(3m)2−6m+1m(1+3m)⋅(m+1+49m−3)
Step 4.11.2
Rewrite 11 as 1212.
(3m)2-6m+12m(1+3m)⋅(m+1+49m-3)(3m)2−6m+12m(1+3m)⋅(m+1+49m−3)
Step 4.11.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6m=2⋅(3m)⋅16m=2⋅(3m)⋅1
Step 4.11.4
Rewrite the polynomial.
(3m)2-2⋅(3m)⋅1+12m(1+3m)⋅(m+1+49m-3)(3m)2−2⋅(3m)⋅1+12m(1+3m)⋅(m+1+49m−3)
Step 4.11.5
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2a2−2ab+b2=(a−b)2, where a=3ma=3m and b=1b=1.
(3m-1)2m(1+3m)⋅(m+1+49m-3)(3m−1)2m(1+3m)⋅(m+1+49m−3)
(3m-1)2m(1+3m)⋅(m+1+49m-3)(3m−1)2m(1+3m)⋅(m+1+49m−3)
(3m-1)2m(1+3m)⋅(m+1+49m-3)(3m−1)2m(1+3m)⋅(m+1+49m−3)
Step 5
Step 5.1
Factor 33 out of 9m-39m−3.
Step 5.1.1
Factor 33 out of 9m9m.
(3m-1)2m(1+3m)⋅(m+1+43(3m)-3)(3m−1)2m(1+3m)⋅(m+1+43(3m)−3)
Step 5.1.2
Factor 33 out of -3−3.
(3m-1)2m(1+3m)⋅(m+1+43(3m)+3(-1))(3m−1)2m(1+3m)⋅(m+1+43(3m)+3(−1))
Step 5.1.3
Factor 33 out of 3(3m)+3(-1)3(3m)+3(−1).
(3m-1)2m(1+3m)⋅(m+1+43(3m-1))(3m−1)2m(1+3m)⋅(m+1+43(3m−1))
(3m-1)2m(1+3m)⋅(m+1+43(3m-1))(3m−1)2m(1+3m)⋅(m+1+43(3m−1))
Step 5.2
Multiply (3m-1)2m(1+3m)(3m−1)2m(1+3m) by m+1+43(3m-1)m+1+43(3m−1).
(3m-1)2(m+1+43(3m-1))m(1+3m)(3m−1)2(m+1+43(3m−1))m(1+3m)
(3m-1)2(m+1+43(3m-1))m(1+3m)(3m−1)2(m+1+43(3m−1))m(1+3m)
Step 6
Step 6.1
To write mm as a fraction with a common denominator, multiply by 3(3m-1)3(3m-1)3(3m−1)3(3m−1).
(3m-1)2(m⋅3(3m-1)3(3m-1)+43(3m-1)+1)m(1+3m)(3m−1)2(m⋅3(3m−1)3(3m−1)+43(3m−1)+1)m(1+3m)
Step 6.2
Combine mm and 3(3m-1)3(3m-1)3(3m−1)3(3m−1).
(3m-1)2(m(3(3m-1))3(3m-1)+43(3m-1)+1)m(1+3m)(3m−1)2(m(3(3m−1))3(3m−1)+43(3m−1)+1)m(1+3m)
Step 6.3
Combine the numerators over the common denominator.
(3m-1)2(m(3(3m-1))+43(3m-1)+1)m(1+3m)(3m−1)2(m(3(3m−1))+43(3m−1)+1)m(1+3m)
Step 6.4
Simplify the numerator.
Step 6.4.1
Rewrite using the commutative property of multiplication.
(3m-1)2(3m(3m-1)+43(3m-1)+1)m(1+3m)(3m−1)2(3m(3m−1)+43(3m−1)+1)m(1+3m)
Step 6.4.2
Apply the distributive property.
(3m-1)2(3m(3m)+3m⋅-1+43(3m-1)+1)m(1+3m)(3m−1)2(3m(3m)+3m⋅−1+43(3m−1)+1)m(1+3m)
Step 6.4.3
Rewrite using the commutative property of multiplication.
(3m-1)2(3⋅3m⋅m+3m⋅-1+43(3m-1)+1)m(1+3m)(3m−1)2(3⋅3m⋅m+3m⋅−1+43(3m−1)+1)m(1+3m)
Step 6.4.4
Multiply -1−1 by 33.
(3m-1)2(3⋅3m⋅m-3m+43(3m-1)+1)m(1+3m)(3m−1)2(3⋅3m⋅m−3m+43(3m−1)+1)m(1+3m)
Step 6.4.5
Simplify each term.
Step 6.4.5.1
Multiply mm by mm by adding the exponents.
Step 6.4.5.1.1
Move mm.
(3m-1)2(3⋅3(m⋅m)-3m+43(3m-1)+1)m(1+3m)(3m−1)2(3⋅3(m⋅m)−3m+43(3m−1)+1)m(1+3m)
Step 6.4.5.1.2
Multiply mm by mm.
(3m-1)2(3⋅3m2-3m+43(3m-1)+1)m(1+3m)(3m−1)2(3⋅3m2−3m+43(3m−1)+1)m(1+3m)
(3m-1)2(3⋅3m2-3m+43(3m-1)+1)m(1+3m)(3m−1)2(3⋅3m2−3m+43(3m−1)+1)m(1+3m)
Step 6.4.5.2
Multiply 33 by 33.
(3m-1)2(9m2-3m+43(3m-1)+1)m(1+3m)(3m−1)2(9m2−3m+43(3m−1)+1)m(1+3m)
(3m-1)2(9m2-3m+43(3m-1)+1)m(1+3m)(3m−1)2(9m2−3m+43(3m−1)+1)m(1+3m)
(3m-1)2(9m2-3m+43(3m-1)+1)m(1+3m)(3m−1)2(9m2−3m+43(3m−1)+1)m(1+3m)
Step 6.5
Write 11 as a fraction with a common denominator.
(3m-1)2(9m2-3m+43(3m-1)+3(3m-1)3(3m-1))m(1+3m)(3m−1)2(9m2−3m+43(3m−1)+3(3m−1)3(3m−1))m(1+3m)
Step 6.6
Combine the numerators over the common denominator.
(3m-1)29m2-3m+4+3(3m-1)3(3m-1)m(1+3m)(3m−1)29m2−3m+4+3(3m−1)3(3m−1)m(1+3m)
Step 6.7
Simplify the numerator.
Step 6.7.1
Apply the distributive property.
(3m-1)29m2-3m+4+3(3m)+3⋅-13(3m-1)m(1+3m)(3m−1)29m2−3m+4+3(3m)+3⋅−13(3m−1)m(1+3m)
Step 6.7.2
Multiply 33 by 33.
(3m-1)29m2-3m+4+9m+3⋅-13(3m-1)m(1+3m)(3m−1)29m2−3m+4+9m+3⋅−13(3m−1)m(1+3m)
Step 6.7.3
Multiply 33 by -1−1.
(3m-1)29m2-3m+4+9m-33(3m-1)m(1+3m)(3m−1)29m2−3m+4+9m−33(3m−1)m(1+3m)
Step 6.7.4
Add -3m−3m and 9m9m.
(3m-1)29m2+6m+4-33(3m-1)m(1+3m)(3m−1)29m2+6m+4−33(3m−1)m(1+3m)
Step 6.7.5
Subtract 33 from 44.
(3m-1)29m2+6m+13(3m-1)m(1+3m)(3m−1)29m2+6m+13(3m−1)m(1+3m)
Step 6.7.6
Factor using the perfect square rule.
Step 6.7.6.1
Rewrite 9m29m2 as (3m)2(3m)2.
(3m-1)2(3m)2+6m+13(3m-1)m(1+3m)(3m−1)2(3m)2+6m+13(3m−1)m(1+3m)
Step 6.7.6.2
Rewrite 11 as 1212.
(3m-1)2(3m)2+6m+123(3m-1)m(1+3m)(3m−1)2(3m)2+6m+123(3m−1)m(1+3m)
Step 6.7.6.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6m=2⋅(3m)⋅16m=2⋅(3m)⋅1
Step 6.7.6.4
Rewrite the polynomial.
(3m-1)2(3m)2+2⋅(3m)⋅1+123(3m-1)m(1+3m)(3m−1)2(3m)2+2⋅(3m)⋅1+123(3m−1)m(1+3m)
Step 6.7.6.5
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2, where a=3ma=3m and b=1b=1.
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m−1)2(3m+1)23(3m−1)m(1+3m)
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m−1)2(3m+1)23(3m−1)m(1+3m)
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m−1)2(3m+1)23(3m−1)m(1+3m)
(3m-1)2(3m+1)23(3m-1)m(1+3m)(3m−1)2(3m+1)23(3m−1)m(1+3m)
Step 7
Step 7.1
Combine (3m-1)2 and (3m+1)23(3m-1).
(3m-1)2(3m+1)23(3m-1)m(1+3m)
Step 7.2
Reduce the expression (3m-1)2(3m+1)23(3m-1) by cancelling the common factors.
Step 7.2.1
Factor 3m-1 out of (3m-1)2(3m+1)2.
(3m-1)((3m-1)(3m+1)2)3(3m-1)m(1+3m)
Step 7.2.2
Factor 3m-1 out of 3(3m-1).
(3m-1)((3m-1)(3m+1)2)(3m-1)⋅3m(1+3m)
Step 7.2.3
Cancel the common factor.
(3m-1)((3m-1)(3m+1)2)(3m-1)⋅3m(1+3m)
Step 7.2.4
Rewrite the expression.
(3m-1)(3m+1)23m(1+3m)
(3m-1)(3m+1)23m(1+3m)
(3m-1)(3m+1)23m(1+3m)
Step 8
Multiply the numerator by the reciprocal of the denominator.
(3m-1)(3m+1)23⋅1m(1+3m)
Step 9
Combine.
(3m-1)(3m+1)2⋅13(m(1+3m))
Step 10
Step 10.1
Reorder terms.
(3m-1)(3m+1)2⋅13(m(3m+1))
Step 10.2
Factor 3m+1 out of (3m-1)(3m+1)2⋅1.
(3m+1)(((3m-1)(3m+1))⋅1)3(m(3m+1))
Step 10.3
Cancel the common factors.
Step 10.3.1
Factor 3m+1 out of 3(m(3m+1)).
(3m+1)(((3m-1)(3m+1))⋅1)(3m+1)(3(m))
Step 10.3.2
Cancel the common factor.
(3m+1)(((3m-1)(3m+1))⋅1)(3m+1)(3(m))
Step 10.3.3
Rewrite the expression.
((3m-1)(3m+1))⋅13(m)
((3m-1)(3m+1))⋅13(m)
((3m-1)(3m+1))⋅13(m)
Step 11
Multiply 3m-1 by 1.
(3m-1)(3m+1)3m