Enter a problem...
Basic Math Examples
(√35)a-(√62581)a+3(√35)a−(√62581)a+3
Step 1
Step 1.1
Rewrite √35 as √3√5.
(√3√5)a-(√62581)a+3
Step 1.2
Multiply √3√5 by √5√5.
(√3√5⋅√5√5)a-(√62581)a+3
Step 1.3
Combine and simplify the denominator.
Step 1.3.1
Multiply √3√5 by √5√5.
(√3√5√5√5)a-(√62581)a+3
Step 1.3.2
Raise √5 to the power of 1.
(√3√5√51√5)a-(√62581)a+3
Step 1.3.3
Raise √5 to the power of 1.
(√3√5√51√51)a-(√62581)a+3
Step 1.3.4
Use the power rule aman=am+n to combine exponents.
(√3√5√51+1)a-(√62581)a+3
Step 1.3.5
Add 1 and 1.
(√3√5√52)a-(√62581)a+3
Step 1.3.6
Rewrite √52 as 5.
Step 1.3.6.1
Use n√ax=axn to rewrite √5 as 512.
(√3√5(512)2)a-(√62581)a+3
Step 1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
(√3√5512⋅2)a-(√62581)a+3
Step 1.3.6.3
Combine 12 and 2.
(√3√5522)a-(√62581)a+3
Step 1.3.6.4
Cancel the common factor of 2.
Step 1.3.6.4.1
Cancel the common factor.
(√3√5522)a-(√62581)a+3
Step 1.3.6.4.2
Rewrite the expression.
(√3√551)a-(√62581)a+3
(√3√551)a-(√62581)a+3
Step 1.3.6.5
Evaluate the exponent.
(√3√55)a-(√62581)a+3
(√3√55)a-(√62581)a+3
(√3√55)a-(√62581)a+3
Step 1.4
Simplify the numerator.
Step 1.4.1
Combine using the product rule for radicals.
(√3⋅55)a-(√62581)a+3
Step 1.4.2
Multiply 3 by 5.
(√155)a-(√62581)a+3
(√155)a-(√62581)a+3
Step 1.5
Apply the product rule to √155.
√15a5a-(√62581)a+3
Step 1.6
Rewrite √62581 as √625√81.
√15a5a-(√625√81)a+3
Step 1.7
Simplify the numerator.
Step 1.7.1
Rewrite 625 as 252.
√15a5a-(√252√81)a+3
Step 1.7.2
Pull terms out from under the radical, assuming positive real numbers.
√15a5a-(25√81)a+3
√15a5a-(25√81)a+3
Step 1.8
Simplify the denominator.
Step 1.8.1
Rewrite 81 as 92.
√15a5a-(25√92)a+3
Step 1.8.2
Pull terms out from under the radical, assuming positive real numbers.
√15a5a-(259)a+3
√15a5a-(259)a+3
Step 1.9
Apply the product rule to 259.
√15a5a-25a+39a+3
√15a5a-25a+39a+3
Step 2
To write √15a5a as a fraction with a common denominator, multiply by 9a+39a+3.
√15a5a⋅9a+39a+3-25a+39a+3
Step 3
To write -25a+39a+3 as a fraction with a common denominator, multiply by 5a5a.
√15a5a⋅9a+39a+3-25a+39a+3⋅5a5a
Step 4
Step 4.1
Multiply √15a5a by 9a+39a+3.
√15a⋅9a+35a⋅9a+3-25a+39a+3⋅5a5a
Step 4.2
Multiply 25a+39a+3 by 5a5a.
√15a⋅9a+35a⋅9a+3-25a+3⋅5a9a+3⋅5a
Step 4.3
Reorder the factors of 5a⋅9a+3.
√15a⋅9a+39a+3⋅5a-25a+3⋅5a9a+3⋅5a
√15a⋅9a+39a+3⋅5a-25a+3⋅5a9a+3⋅5a
Step 5
Combine the numerators over the common denominator.
√15a⋅9a+3-25a+3⋅5a9a+3⋅5a
Step 6
Step 6.1
Rewrite 25 as 52.
√15a⋅9a+3-(5a⋅(52)a+3)9a+3⋅5a
Step 6.2
Multiply the exponents in (52)a+3.
Step 6.2.1
Apply the power rule and multiply exponents, (am)n=amn.
√15a⋅9a+3-(5a⋅52(a+3))9a+3⋅5a
Step 6.2.2
Apply the distributive property.
√15a⋅9a+3-(5a⋅52a+2⋅3)9a+3⋅5a
Step 6.2.3
Multiply 2 by 3.
√15a⋅9a+3-(5a⋅52a+6)9a+3⋅5a
√15a⋅9a+3-(5a⋅52a+6)9a+3⋅5a
Step 6.3
Use the power rule aman=am+n to combine exponents.
√15a⋅9a+3-5a+2a+69a+3⋅5a
Step 6.4
Add a and 2a.
√15a⋅9a+3-53a+69a+3⋅5a
√15a⋅9a+3-53a+69a+3⋅5a