Enter a problem...
Basic Math Examples
(4ab-33b)3(4ab−33b)3
Step 1
Move b-3b−3 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
(4a3b⋅b3)3(4a3b⋅b3)3
Step 2
Step 2.1
Move b3b3.
(4a3(b3b))3(4a3(b3b))3
Step 2.2
Multiply b3b3 by bb.
Step 2.2.1
Raise bb to the power of 11.
(4a3(b3b1))3(4a3(b3b1))3
Step 2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
(4a3b3+1)3(4a3b3+1)3
(4a3b3+1)3(4a3b3+1)3
Step 2.3
Add 33 and 11.
(4a3b4)3(4a3b4)3
(4a3b4)3(4a3b4)3
Step 3
Step 3.1
Apply the product rule to 4a3b44a3b4.
(4a)3(3b4)3(4a)3(3b4)3
Step 3.2
Apply the product rule to 4a4a.
43a3(3b4)343a3(3b4)3
Step 3.3
Apply the product rule to 3b43b4.
43a333(b4)343a333(b4)3
43a333(b4)3
Step 4
Raise 4 to the power of 3.
64a333(b4)3
Step 5
Step 5.1
Raise 3 to the power of 3.
64a327(b4)3
Step 5.2
Multiply the exponents in (b4)3.
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn.
64a327b4⋅3
Step 5.2.2
Multiply 4 by 3.
64a327b12
64a327b12
64a327b12