Basic Math Examples

Simplify ((4ab^-3)/(3b))^3
(4ab-33b)3(4ab33b)3
Step 1
Move b-3b3 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
(4a3bb3)3(4a3bb3)3
Step 2
Multiply bb by b3b3 by adding the exponents.
Tap for more steps...
Step 2.1
Move b3b3.
(4a3(b3b))3(4a3(b3b))3
Step 2.2
Multiply b3b3 by bb.
Tap for more steps...
Step 2.2.1
Raise bb to the power of 11.
(4a3(b3b1))3(4a3(b3b1))3
Step 2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
(4a3b3+1)3(4a3b3+1)3
(4a3b3+1)3(4a3b3+1)3
Step 2.3
Add 33 and 11.
(4a3b4)3(4a3b4)3
(4a3b4)3(4a3b4)3
Step 3
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.1
Apply the product rule to 4a3b44a3b4.
(4a)3(3b4)3(4a)3(3b4)3
Step 3.2
Apply the product rule to 4a4a.
43a3(3b4)343a3(3b4)3
Step 3.3
Apply the product rule to 3b43b4.
43a333(b4)343a333(b4)3
43a333(b4)3
Step 4
Raise 4 to the power of 3.
64a333(b4)3
Step 5
Simplify the denominator.
Tap for more steps...
Step 5.1
Raise 3 to the power of 3.
64a327(b4)3
Step 5.2
Multiply the exponents in (b4)3.
Tap for more steps...
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn.
64a327b43
Step 5.2.2
Multiply 4 by 3.
64a327b12
64a327b12
64a327b12
 [x2  12  π  xdx ]