Enter a problem...
Basic Math Examples
(2a0b-2c-3⋅b2a-3c4)-3(2a0b−2c−3⋅b2a−3c4)−3
Step 1
Step 1.1
Move bb.
(2a0(b⋅b-2)c-32a-3c4)-3(2a0(b⋅b−2)c−32a−3c4)−3
Step 1.2
Multiply bb by b-2b−2.
Step 1.2.1
Raise bb to the power of 11.
(2a0(b1b-2)c-32a-3c4)-3(2a0(b1b−2)c−32a−3c4)−3
Step 1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
(2a0b1-2c-32a-3c4)-3(2a0b1−2c−32a−3c4)−3
(2a0b1-2c-32a-3c4)-3(2a0b1−2c−32a−3c4)−3
Step 1.3
Subtract 22 from 11.
(2a0b-1c-32a-3c4)-3(2a0b−1c−32a−3c4)−3
(2a0b-1c-32a-3c4)-3(2a0b−1c−32a−3c4)−3
Step 2
Simplify 2a0b-1c-32a0b−1c−3.
(2b-1c-32a-3c4)-3(2b−1c−32a−3c4)−3
Step 3
Move b-1b−1 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
(2c-32a-3c4b)-3(2c−32a−3c4b)−3
Step 4
Move c-3c−3 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
(22a-3c4bc3)-3(22a−3c4bc3)−3
Step 5
Step 5.1
Move c3c3.
(22a-3(c3c4)b)-3(22a−3(c3c4)b)−3
Step 5.2
Use the power rule aman=am+naman=am+n to combine exponents.
(22a-3c3+4b)-3(22a−3c3+4b)−3
Step 5.3
Add 33 and 44.
(22a-3c7b)-3(22a−3c7b)−3
(22a-3c7b)-3(22a−3c7b)−3
Step 6
Move a-3a−3 to the numerator using the negative exponent rule 1b-n=bn1b−n=bn.
(2a32c7b)-3(2a32c7b)−3
Step 7
Step 7.1
Cancel the common factor.
(2a32c7b)-3
Step 7.2
Rewrite the expression.
(a3c7b)-3
(a3c7b)-3
Step 8
Change the sign of the exponent by rewriting the base as its reciprocal.
(c7ba3)3
Step 9
Step 9.1
Apply the product rule to c7ba3.
(c7b)3(a3)3
Step 9.2
Apply the product rule to c7b.
(c7)3b3(a3)3
(c7)3b3(a3)3
Step 10
Step 10.1
Apply the power rule and multiply exponents, (am)n=amn.
c7⋅3b3(a3)3
Step 10.2
Multiply 7 by 3.
c21b3(a3)3
c21b3(a3)3
Step 11
Step 11.1
Apply the power rule and multiply exponents, (am)n=amn.
c21b3a3⋅3
Step 11.2
Multiply 3 by 3.
c21b3a9
c21b3a9