Basic Math Examples

Simplify ((2a^0b^-2c^-3*b)/(2a^-3c^4))^-3
(2a0b-2c-3b2a-3c4)-3(2a0b2c3b2a3c4)3
Step 1
Multiply b-2b2 by bb by adding the exponents.
Tap for more steps...
Step 1.1
Move bb.
(2a0(bb-2)c-32a-3c4)-3(2a0(bb2)c32a3c4)3
Step 1.2
Multiply bb by b-2b2.
Tap for more steps...
Step 1.2.1
Raise bb to the power of 11.
(2a0(b1b-2)c-32a-3c4)-3(2a0(b1b2)c32a3c4)3
Step 1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
(2a0b1-2c-32a-3c4)-3(2a0b12c32a3c4)3
(2a0b1-2c-32a-3c4)-3(2a0b12c32a3c4)3
Step 1.3
Subtract 22 from 11.
(2a0b-1c-32a-3c4)-3(2a0b1c32a3c4)3
(2a0b-1c-32a-3c4)-3(2a0b1c32a3c4)3
Step 2
Simplify 2a0b-1c-32a0b1c3.
(2b-1c-32a-3c4)-3(2b1c32a3c4)3
Step 3
Move b-1b1 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
(2c-32a-3c4b)-3(2c32a3c4b)3
Step 4
Move c-3c3 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
(22a-3c4bc3)-3(22a3c4bc3)3
Step 5
Multiply c4c4 by c3c3 by adding the exponents.
Tap for more steps...
Step 5.1
Move c3c3.
(22a-3(c3c4)b)-3(22a3(c3c4)b)3
Step 5.2
Use the power rule aman=am+naman=am+n to combine exponents.
(22a-3c3+4b)-3(22a3c3+4b)3
Step 5.3
Add 33 and 44.
(22a-3c7b)-3(22a3c7b)3
(22a-3c7b)-3(22a3c7b)3
Step 6
Move a-3a3 to the numerator using the negative exponent rule 1b-n=bn1bn=bn.
(2a32c7b)-3(2a32c7b)3
Step 7
Cancel the common factor of 22.
Tap for more steps...
Step 7.1
Cancel the common factor.
(2a32c7b)-3
Step 7.2
Rewrite the expression.
(a3c7b)-3
(a3c7b)-3
Step 8
Change the sign of the exponent by rewriting the base as its reciprocal.
(c7ba3)3
Step 9
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 9.1
Apply the product rule to c7ba3.
(c7b)3(a3)3
Step 9.2
Apply the product rule to c7b.
(c7)3b3(a3)3
(c7)3b3(a3)3
Step 10
Multiply the exponents in (c7)3.
Tap for more steps...
Step 10.1
Apply the power rule and multiply exponents, (am)n=amn.
c73b3(a3)3
Step 10.2
Multiply 7 by 3.
c21b3(a3)3
c21b3(a3)3
Step 11
Multiply the exponents in (a3)3.
Tap for more steps...
Step 11.1
Apply the power rule and multiply exponents, (am)n=amn.
c21b3a33
Step 11.2
Multiply 3 by 3.
c21b3a9
c21b3a9
 [x2  12  π  xdx ]