Enter a problem...
Basic Math Examples
(b-52c-23)2(b-12c-13)-1(b−52c−23)2(b−12c−13)−1
Step 1
Move b-52 to the denominator using the negative exponent rule b-n=1bn.
(1c-23b52)2(b-12c-13)-1
Step 2
Move c-23 to the numerator using the negative exponent rule 1b-n=bn.
(c23b52)2(b-12c-13)-1
Step 3
Apply the product rule to c23b52.
(c23)2(b52)2(b-12c-13)-1
Step 4
Step 4.1
Apply the power rule and multiply exponents, (am)n=amn.
c23⋅2(b52)2(b-12c-13)-1
Step 4.2
Multiply 23⋅2.
Step 4.2.1
Combine 23 and 2.
c2⋅23(b52)2(b-12c-13)-1
Step 4.2.2
Multiply 2 by 2.
c43(b52)2(b-12c-13)-1
c43(b52)2(b-12c-13)-1
c43(b52)2(b-12c-13)-1
Step 5
Step 5.1
Apply the power rule and multiply exponents, (am)n=amn.
c43b52⋅2(b-12c-13)-1
Step 5.2
Cancel the common factor of 2.
Step 5.2.1
Cancel the common factor.
c43b52⋅2(b-12c-13)-1
Step 5.2.2
Rewrite the expression.
c43b5(b-12c-13)-1
c43b5(b-12c-13)-1
c43b5(b-12c-13)-1
Step 6
Rewrite the expression using the negative exponent rule b-n=1bn.
c43b5(1b12c-13)-1
Step 7
Rewrite the expression using the negative exponent rule b-n=1bn.
c43b5(1b12⋅1c13)-1
Step 8
Combine.
c43b5(1⋅1b12c13)-1
Step 9
Multiply 1 by 1.
c43b5(1b12c13)-1
Step 10
Change the sign of the exponent by rewriting the base as its reciprocal.
c43b5(b12c13)
Step 11
Step 11.1
Factor b12 out of b5.
c43b12b92(b12c13)
Step 11.2
Factor b12 out of b12c13.
c43b12b92(b12(c13))
Step 11.3
Cancel the common factor.
c43b12b92(b12c13)
Step 11.4
Rewrite the expression.
c43b92c13
c43b92c13
Step 12
Combine c43b92 and c13.
c43c13b92
Step 13
Step 13.1
Use the power rule aman=am+n to combine exponents.
c43+13b92
Step 13.2
Combine the numerators over the common denominator.
c4+13b92
Step 13.3
Add 4 and 1.
c53b92
c53b92