Enter a problem...
Basic Math Examples
(4k-2)2(4k−2)2
Step 1
Rewrite (4k-2)2(4k−2)2 as (4k-2)(4k-2)(4k−2)(4k−2).
(4k-2)(4k-2)(4k−2)(4k−2)
Step 2
Step 2.1
Apply the distributive property.
4k(4k-2)-2(4k-2)4k(4k−2)−2(4k−2)
Step 2.2
Apply the distributive property.
4k(4k)+4k⋅-2-2(4k-2)4k(4k)+4k⋅−2−2(4k−2)
Step 2.3
Apply the distributive property.
4k(4k)+4k⋅-2-2(4k)-2⋅-24k(4k)+4k⋅−2−2(4k)−2⋅−2
4k(4k)+4k⋅-2-2(4k)-2⋅-24k(4k)+4k⋅−2−2(4k)−2⋅−2
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Rewrite using the commutative property of multiplication.
4⋅4k⋅k+4k⋅-2-2(4k)-2⋅-24⋅4k⋅k+4k⋅−2−2(4k)−2⋅−2
Step 3.1.2
Multiply kk by kk by adding the exponents.
Step 3.1.2.1
Move kk.
4⋅4(k⋅k)+4k⋅-2-2(4k)-2⋅-24⋅4(k⋅k)+4k⋅−2−2(4k)−2⋅−2
Step 3.1.2.2
Multiply kk by kk.
4⋅4k2+4k⋅-2-2(4k)-2⋅-24⋅4k2+4k⋅−2−2(4k)−2⋅−2
4⋅4k2+4k⋅-2-2(4k)-2⋅-24⋅4k2+4k⋅−2−2(4k)−2⋅−2
Step 3.1.3
Multiply 44 by 44.
16k2+4k⋅-2-2(4k)-2⋅-216k2+4k⋅−2−2(4k)−2⋅−2
Step 3.1.4
Multiply -2−2 by 44.
16k2-8k-2(4k)-2⋅-216k2−8k−2(4k)−2⋅−2
Step 3.1.5
Multiply 44 by -2−2.
16k2-8k-8k-2⋅-216k2−8k−8k−2⋅−2
Step 3.1.6
Multiply -2−2 by -2−2.
16k2-8k-8k+416k2−8k−8k+4
16k2-8k-8k+416k2−8k−8k+4
Step 3.2
Subtract 8k8k from -8k−8k.
16k2-16k+416k2−16k+4
16k2-16k+416k2−16k+4