Enter a problem...
Basic Math Examples
(5a3b-2c5)2(5a3b−2c5)2
Step 1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
(5a31b2c5)2(5a31b2c5)2
Step 2
Step 2.1
Combine 55 and 1b21b2.
(a35b2c5)2(a35b2c5)2
Step 2.2
Combine a3a3 and 5b25b2.
(a3⋅5b2c5)2(a3⋅5b2c5)2
(a3⋅5b2c5)2(a3⋅5b2c5)2
Step 3
Move 55 to the left of a3a3.
(5⋅a3b2c5)2(5⋅a3b2c5)2
Step 4
Combine 5a3b2 and c5.
(5a3c5b2)2
Step 5
Step 5.1
Apply the product rule to 5a3c5b2.
(5a3c5)2(b2)2
Step 5.2
Apply the product rule to 5a3c5.
(5a3)2(c5)2(b2)2
Step 5.3
Apply the product rule to 5a3.
52(a3)2(c5)2(b2)2
52(a3)2(c5)2(b2)2
Step 6
Step 6.1
Raise 5 to the power of 2.
25(a3)2(c5)2(b2)2
Step 6.2
Multiply the exponents in (a3)2.
Step 6.2.1
Apply the power rule and multiply exponents, (am)n=amn.
25a3⋅2(c5)2(b2)2
Step 6.2.2
Multiply 3 by 2.
25a6(c5)2(b2)2
25a6(c5)2(b2)2
Step 6.3
Multiply the exponents in (c5)2.
Step 6.3.1
Apply the power rule and multiply exponents, (am)n=amn.
25a6c5⋅2(b2)2
Step 6.3.2
Multiply 5 by 2.
25a6c10(b2)2
25a6c10(b2)2
25a6c10(b2)2
Step 7
Step 7.1
Apply the power rule and multiply exponents, (am)n=amn.
25a6c10b2⋅2
Step 7.2
Multiply 2 by 2.
25a6c10b4
25a6c10b4