Basic Math Examples

Simplify (5a^3b^-2c^5)^2
(5a3b-2c5)2(5a3b2c5)2
Step 1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
(5a31b2c5)2(5a31b2c5)2
Step 2
Multiply 5a31b25a31b2.
Tap for more steps...
Step 2.1
Combine 55 and 1b21b2.
(a35b2c5)2(a35b2c5)2
Step 2.2
Combine a3a3 and 5b25b2.
(a35b2c5)2(a35b2c5)2
(a35b2c5)2(a35b2c5)2
Step 3
Move 55 to the left of a3a3.
(5a3b2c5)2(5a3b2c5)2
Step 4
Combine 5a3b2 and c5.
(5a3c5b2)2
Step 5
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.1
Apply the product rule to 5a3c5b2.
(5a3c5)2(b2)2
Step 5.2
Apply the product rule to 5a3c5.
(5a3)2(c5)2(b2)2
Step 5.3
Apply the product rule to 5a3.
52(a3)2(c5)2(b2)2
52(a3)2(c5)2(b2)2
Step 6
Simplify the numerator.
Tap for more steps...
Step 6.1
Raise 5 to the power of 2.
25(a3)2(c5)2(b2)2
Step 6.2
Multiply the exponents in (a3)2.
Tap for more steps...
Step 6.2.1
Apply the power rule and multiply exponents, (am)n=amn.
25a32(c5)2(b2)2
Step 6.2.2
Multiply 3 by 2.
25a6(c5)2(b2)2
25a6(c5)2(b2)2
Step 6.3
Multiply the exponents in (c5)2.
Tap for more steps...
Step 6.3.1
Apply the power rule and multiply exponents, (am)n=amn.
25a6c52(b2)2
Step 6.3.2
Multiply 5 by 2.
25a6c10(b2)2
25a6c10(b2)2
25a6c10(b2)2
Step 7
Multiply the exponents in (b2)2.
Tap for more steps...
Step 7.1
Apply the power rule and multiply exponents, (am)n=amn.
25a6c10b22
Step 7.2
Multiply 2 by 2.
25a6c10b4
25a6c10b4
Enter a problem...
 [x2  12  π  xdx ]