Basic Math Examples

Simplify (3a-5)^3
(3a-5)3
Step 1
Use the Binomial Theorem.
(3a)3+3(3a)2-5+3(3a)(-5)2+(-5)3
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Apply the product rule to 3a.
33a3+3(3a)2-5+3(3a)(-5)2+(-5)3
Step 2.2
Raise 3 to the power of 3.
27a3+3(3a)2-5+3(3a)(-5)2+(-5)3
Step 2.3
Apply the product rule to 3a.
27a3+3(32a2)-5+3(3a)(-5)2+(-5)3
Step 2.4
Multiply 3 by 32 by adding the exponents.
Tap for more steps...
Step 2.4.1
Move 32.
27a3+323a2-5+3(3a)(-5)2+(-5)3
Step 2.4.2
Multiply 32 by 3.
Tap for more steps...
Step 2.4.2.1
Raise 3 to the power of 1.
27a3+3231a2-5+3(3a)(-5)2+(-5)3
Step 2.4.2.2
Use the power rule aman=am+n to combine exponents.
27a3+32+1a2-5+3(3a)(-5)2+(-5)3
27a3+32+1a2-5+3(3a)(-5)2+(-5)3
Step 2.4.3
Add 2 and 1.
27a3+33a2-5+3(3a)(-5)2+(-5)3
27a3+33a2-5+3(3a)(-5)2+(-5)3
Step 2.5
Raise 3 to the power of 3.
27a3+27a2-5+3(3a)(-5)2+(-5)3
Step 2.6
Multiply -5 by 27.
27a3-135a2+3(3a)(-5)2+(-5)3
Step 2.7
Multiply 3 by 3.
27a3-135a2+9a(-5)2+(-5)3
Step 2.8
Raise -5 to the power of 2.
27a3-135a2+9a25+(-5)3
Step 2.9
Multiply 25 by 9.
27a3-135a2+225a+(-5)3
Step 2.10
Raise -5 to the power of 3.
27a3-135a2+225a-125
27a3-135a2+225a-125
 [x2  12  π  xdx ]