Enter a problem...
Basic Math Examples
(2x-3y)3-(2x+3y)3(2x−3y)3−(2x+3y)3
Step 1
Step 1.1
Use the Binomial Theorem.
(2x)3+3(2x)2(-3y)+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2
Simplify each term.
Step 1.2.1
Apply the product rule to 2x.
23x3+3(2x)2(-3y)+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.2
Raise 2 to the power of 3.
8x3+3(2x)2(-3y)+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.3
Rewrite using the commutative property of multiplication.
8x3+3⋅-3(2x)2y+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.4
Multiply 3 by -3.
8x3-9(2x)2y+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.5
Apply the product rule to 2x.
8x3-9(22x2)y+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.6
Raise 2 to the power of 2.
8x3-9(4x2)y+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.7
Multiply 4 by -9.
8x3-36x2y+3(2x)(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.8
Multiply 2 by 3.
8x3-36x2y+6x(-3y)2+(-3y)3-(2x+3y)3
Step 1.2.9
Apply the product rule to -3y.
8x3-36x2y+6x((-3)2y2)+(-3y)3-(2x+3y)3
Step 1.2.10
Rewrite using the commutative property of multiplication.
8x3-36x2y+6⋅(-3)2xy2+(-3y)3-(2x+3y)3
Step 1.2.11
Raise -3 to the power of 2.
8x3-36x2y+6⋅9xy2+(-3y)3-(2x+3y)3
Step 1.2.12
Multiply 6 by 9.
8x3-36x2y+54xy2+(-3y)3-(2x+3y)3
Step 1.2.13
Apply the product rule to -3y.
8x3-36x2y+54xy2+(-3)3y3-(2x+3y)3
Step 1.2.14
Raise -3 to the power of 3.
8x3-36x2y+54xy2-27y3-(2x+3y)3
8x3-36x2y+54xy2-27y3-(2x+3y)3
Step 1.3
Use the Binomial Theorem.
8x3-36x2y+54xy2-27y3-((2x)3+3(2x)2(3y)+3(2x)(3y)2+(3y)3)
Step 1.4
Simplify each term.
Step 1.4.1
Apply the product rule to 2x.
8x3-36x2y+54xy2-27y3-(23x3+3(2x)2(3y)+3(2x)(3y)2+(3y)3)
Step 1.4.2
Raise 2 to the power of 3.
8x3-36x2y+54xy2-27y3-(8x3+3(2x)2(3y)+3(2x)(3y)2+(3y)3)
Step 1.4.3
Rewrite using the commutative property of multiplication.
8x3-36x2y+54xy2-27y3-(8x3+3⋅3(2x)2y+3(2x)(3y)2+(3y)3)
Step 1.4.4
Multiply 3 by 3.
8x3-36x2y+54xy2-27y3-(8x3+9(2x)2y+3(2x)(3y)2+(3y)3)
Step 1.4.5
Apply the product rule to 2x.
8x3-36x2y+54xy2-27y3-(8x3+9(22x2)y+3(2x)(3y)2+(3y)3)
Step 1.4.6
Raise 2 to the power of 2.
8x3-36x2y+54xy2-27y3-(8x3+9(4x2)y+3(2x)(3y)2+(3y)3)
Step 1.4.7
Multiply 4 by 9.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+3(2x)(3y)2+(3y)3)
Step 1.4.8
Multiply 2 by 3.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+6x(3y)2+(3y)3)
Step 1.4.9
Apply the product rule to 3y.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+6x(32y2)+(3y)3)
Step 1.4.10
Rewrite using the commutative property of multiplication.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+6⋅32xy2+(3y)3)
Step 1.4.11
Raise 3 to the power of 2.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+6⋅9xy2+(3y)3)
Step 1.4.12
Multiply 6 by 9.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+54xy2+(3y)3)
Step 1.4.13
Apply the product rule to 3y.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+54xy2+33y3)
Step 1.4.14
Raise 3 to the power of 3.
8x3-36x2y+54xy2-27y3-(8x3+36x2y+54xy2+27y3)
8x3-36x2y+54xy2-27y3-(8x3+36x2y+54xy2+27y3)
Step 1.5
Apply the distributive property.
8x3-36x2y+54xy2-27y3-(8x3)-(36x2y)-(54xy2)-(27y3)
Step 1.6
Simplify.
Step 1.6.1
Multiply 8 by -1.
8x3-36x2y+54xy2-27y3-8x3-(36x2y)-(54xy2)-(27y3)
Step 1.6.2
Multiply 36 by -1.
8x3-36x2y+54xy2-27y3-8x3-36(x2y)-(54xy2)-(27y3)
Step 1.6.3
Multiply 54 by -1.
8x3-36x2y+54xy2-27y3-8x3-36(x2y)-54(xy2)-(27y3)
Step 1.6.4
Multiply 27 by -1.
8x3-36x2y+54xy2-27y3-8x3-36(x2y)-54(xy2)-27y3
8x3-36x2y+54xy2-27y3-8x3-36(x2y)-54(xy2)-27y3
Step 1.7
Remove parentheses.
8x3-36x2y+54xy2-27y3-8x3-36x2y-54xy2-27y3
8x3-36x2y+54xy2-27y3-8x3-36x2y-54xy2-27y3
Step 2
Step 2.1
Combine the opposite terms in 8x3-36x2y+54xy2-27y3-8x3-36x2y-54xy2-27y3.
Step 2.1.1
Subtract 8x3 from 8x3.
-36x2y+54xy2-27y3+0-36x2y-54xy2-27y3
Step 2.1.2
Add -36x2y+54xy2-27y3 and 0.
-36x2y+54xy2-27y3-36x2y-54xy2-27y3
Step 2.1.3
Subtract 54xy2 from 54xy2.
-36x2y-27y3-36x2y+0-27y3
Step 2.1.4
Add -36x2y-27y3-36x2y and 0.
-36x2y-27y3-36x2y-27y3
-36x2y-27y3-36x2y-27y3
Step 2.2
Subtract 36x2y from -36x2y.
-27y3-72x2y-27y3
Step 2.3
Subtract 27y3 from -27y3.
-54y3-72x2y
-54y3-72x2y