Enter a problem...
Basic Math Examples
5(2y-7)=-2y+75(2y−7)=−2y+7
Step 1
Step 1.1
Rewrite.
0+0+5(2y-7)=-2y+70+0+5(2y−7)=−2y+7
Step 1.2
Simplify by adding zeros.
5(2y-7)=-2y+75(2y−7)=−2y+7
Step 1.3
Apply the distributive property.
5(2y)+5⋅-7=-2y+75(2y)+5⋅−7=−2y+7
Step 1.4
Multiply.
Step 1.4.1
Multiply 22 by 55.
10y+5⋅-7=-2y+710y+5⋅−7=−2y+7
Step 1.4.2
Multiply 55 by -7−7.
10y-35=-2y+710y−35=−2y+7
10y-35=-2y+710y−35=−2y+7
10y-35=-2y+710y−35=−2y+7
Step 2
Step 2.1
Add 2y2y to both sides of the equation.
10y-35+2y=710y−35+2y=7
Step 2.2
Add 10y10y and 2y2y.
12y-35=712y−35=7
12y-35=712y−35=7
Step 3
Step 3.1
Add 3535 to both sides of the equation.
12y=7+3512y=7+35
Step 3.2
Add 77 and 3535.
12y=4212y=42
12y=4212y=42
Step 4
Step 4.1
Divide each term in 12y=4212y=42 by 1212.
12y12=421212y12=4212
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of 1212.
Step 4.2.1.1
Cancel the common factor.
12y12=4212
Step 4.2.1.2
Divide y by 1.
y=4212
y=4212
y=4212
Step 4.3
Simplify the right side.
Step 4.3.1
Cancel the common factor of 42 and 12.
Step 4.3.1.1
Factor 6 out of 42.
y=6(7)12
Step 4.3.1.2
Cancel the common factors.
Step 4.3.1.2.1
Factor 6 out of 12.
y=6⋅76⋅2
Step 4.3.1.2.2
Cancel the common factor.
y=6⋅76⋅2
Step 4.3.1.2.3
Rewrite the expression.
y=72
y=72
y=72
y=72
y=72
Step 5
The result can be shown in multiple forms.
Exact Form:
y=72
Decimal Form:
y=3.5
Mixed Number Form:
y=312