Basic Math Examples

Solve for z ( cube root of 16^(z/2))/(2* sixth root of 64^-3)=4
316z22664-3=4316z226643=4
Step 1
Multiply both sides of the equation by 2664-326643.
2664-3316z22664-3=2664-3426643316z226643=266434
Step 2
Simplify both sides of the equation.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Cancel the common factor of 2664-326643.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
2664-3316z22664-3=2664-34
Step 2.1.1.2
Rewrite the expression.
316z2=2664-34
316z2=2664-34
316z2=2664-34
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify 2664-34.
Tap for more steps...
Step 2.2.1.1
Rewrite the expression using the negative exponent rule b-n=1bn.
316z2=2616434
Step 2.2.1.2
Raise 64 to the power of 3.
316z2=2612621444
Step 2.2.1.3
Rewrite 61262144 as 616262144.
316z2=26162621444
Step 2.2.1.4
Any root of 1 is 1.
316z2=2162621444
Step 2.2.1.5
Simplify the denominator.
Tap for more steps...
Step 2.2.1.5.1
Rewrite 262144 as 86.
316z2=216864
Step 2.2.1.5.2
Pull terms out from under the radical, assuming positive real numbers.
316z2=2184
316z2=2184
Step 2.2.1.6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.2.1.6.1
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.1.6.1.1
Factor 2 out of 8.
316z2=212(4)4
Step 2.2.1.6.1.2
Cancel the common factor.
316z2=21244
Step 2.2.1.6.1.3
Rewrite the expression.
316z2=144
316z2=144
Step 2.2.1.6.2
Cancel the common factor of 4.
Tap for more steps...
Step 2.2.1.6.2.1
Cancel the common factor.
316z2=144
Step 2.2.1.6.2.2
Rewrite the expression.
316z2=1
316z2=1
316z2=1
316z2=1
316z2=1
316z2=1
Step 3
To remove the radical on the left side of the equation, cube both sides of the equation.
316z23=13
Step 4
Simplify each side of the equation.
Tap for more steps...
Step 4.1
Use nax=axn to rewrite 316z2 as 16z23.
(16z23)3=13
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
(16z213)3=13
Step 4.3
Multiply z213.
Tap for more steps...
Step 4.3.1
Multiply z2 by 13.
(16z23)3=13
Step 4.3.2
Multiply 2 by 3.
(16z6)3=13
(16z6)3=13
Step 4.4
Simplify the left side.
Tap for more steps...
Step 4.4.1
Multiply the exponents in (16z6)3.
Tap for more steps...
Step 4.4.1.1
Apply the power rule and multiply exponents, (am)n=amn.
16z63=13
Step 4.4.1.2
Cancel the common factor of 3.
Tap for more steps...
Step 4.4.1.2.1
Factor 3 out of 6.
16z3(2)3=13
Step 4.4.1.2.2
Cancel the common factor.
16z323=13
Step 4.4.1.2.3
Rewrite the expression.
16z2=13
16z2=13
16z2=13
16z2=13
Step 4.5
Simplify the right side.
Tap for more steps...
Step 4.5.1
One to any power is one.
16z2=1
16z2=1
16z2=1
Step 5
Solve for z.
Tap for more steps...
Step 5.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(16z2)=ln(1)
Step 5.2
Expand the left side.
Tap for more steps...
Step 5.2.1
Expand ln(16z2) by moving z2 outside the logarithm.
z2ln(16)=ln(1)
Step 5.2.2
Combine z2 and ln(16).
zln(16)2=ln(1)
zln(16)2=ln(1)
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
The natural logarithm of 1 is 0.
zln(16)2=0
zln(16)2=0
Step 5.4
Set the numerator equal to zero.
zln(16)=0
Step 5.5
Divide each term in zln(16)=0 by ln(16) and simplify.
Tap for more steps...
Step 5.5.1
Divide each term in zln(16)=0 by ln(16).
zln(16)ln(16)=0ln(16)
Step 5.5.2
Simplify the left side.
Tap for more steps...
Step 5.5.2.1
Cancel the common factor of ln(16).
Tap for more steps...
Step 5.5.2.1.1
Cancel the common factor.
zln(16)ln(16)=0ln(16)
Step 5.5.2.1.2
Divide z by 1.
z=0ln(16)
z=0ln(16)
z=0ln(16)
Step 5.5.3
Simplify the right side.
Tap for more steps...
Step 5.5.3.1
Rewrite ln(16) as ln(24).
z=0ln(24)
Step 5.5.3.2
Expand ln(24) by moving 4 outside the logarithm.
z=04ln(2)
Step 5.5.3.3
Cancel the common factor of 0 and 4.
Tap for more steps...
Step 5.5.3.3.1
Factor 4 out of 0.
z=4(0)4ln(2)
Step 5.5.3.3.2
Cancel the common factors.
Tap for more steps...
Step 5.5.3.3.2.1
Factor 4 out of 4ln(2).
z=4(0)4(ln(2))
Step 5.5.3.3.2.2
Cancel the common factor.
z=404ln(2)
Step 5.5.3.3.2.3
Rewrite the expression.
z=0ln(2)
z=0ln(2)
z=0ln(2)
Step 5.5.3.4
Divide 0 by ln(2).
z=0
z=0
z=0
z=0
 [x2  12  π  xdx ]