Enter a problem...
Basic Math Examples
3√16z22⋅6√64-3=43√16z22⋅6√64−3=4
Step 1
Multiply both sides of the equation by 2⋅6√64-32⋅6√64−3.
2⋅6√64-33√16z22⋅6√64-3=2⋅6√64-3⋅42⋅6√64−33√16z22⋅6√64−3=2⋅6√64−3⋅4
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of 2⋅6√64-32⋅6√64−3.
Step 2.1.1.1
Cancel the common factor.
2⋅6√64-33√16z22⋅6√64-3=2⋅6√64-3⋅4
Step 2.1.1.2
Rewrite the expression.
3√16z2=2⋅6√64-3⋅4
3√16z2=2⋅6√64-3⋅4
3√16z2=2⋅6√64-3⋅4
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify 2⋅6√64-3⋅4.
Step 2.2.1.1
Rewrite the expression using the negative exponent rule b-n=1bn.
3√16z2=2⋅6√1643⋅4
Step 2.2.1.2
Raise 64 to the power of 3.
3√16z2=2⋅6√1262144⋅4
Step 2.2.1.3
Rewrite 6√1262144 as 6√16√262144.
3√16z2=2⋅6√16√262144⋅4
Step 2.2.1.4
Any root of 1 is 1.
3√16z2=2⋅16√262144⋅4
Step 2.2.1.5
Simplify the denominator.
Step 2.2.1.5.1
Rewrite 262144 as 86.
3√16z2=2⋅16√86⋅4
Step 2.2.1.5.2
Pull terms out from under the radical, assuming positive real numbers.
3√16z2=2⋅18⋅4
3√16z2=2⋅18⋅4
Step 2.2.1.6
Reduce the expression by cancelling the common factors.
Step 2.2.1.6.1
Cancel the common factor of 2.
Step 2.2.1.6.1.1
Factor 2 out of 8.
3√16z2=2⋅12(4)⋅4
Step 2.2.1.6.1.2
Cancel the common factor.
3√16z2=2⋅12⋅4⋅4
Step 2.2.1.6.1.3
Rewrite the expression.
3√16z2=14⋅4
3√16z2=14⋅4
Step 2.2.1.6.2
Cancel the common factor of 4.
Step 2.2.1.6.2.1
Cancel the common factor.
3√16z2=14⋅4
Step 2.2.1.6.2.2
Rewrite the expression.
3√16z2=1
3√16z2=1
3√16z2=1
3√16z2=1
3√16z2=1
3√16z2=1
Step 3
To remove the radical on the left side of the equation, cube both sides of the equation.
3√16z23=13
Step 4
Step 4.1
Use n√ax=axn to rewrite 3√16z2 as 16z23.
(16z23)3=13
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
(16z2⋅13)3=13
Step 4.3
Multiply z2⋅13.
Step 4.3.1
Multiply z2 by 13.
(16z2⋅3)3=13
Step 4.3.2
Multiply 2 by 3.
(16z6)3=13
(16z6)3=13
Step 4.4
Simplify the left side.
Step 4.4.1
Multiply the exponents in (16z6)3.
Step 4.4.1.1
Apply the power rule and multiply exponents, (am)n=amn.
16z6⋅3=13
Step 4.4.1.2
Cancel the common factor of 3.
Step 4.4.1.2.1
Factor 3 out of 6.
16z3(2)⋅3=13
Step 4.4.1.2.2
Cancel the common factor.
16z3⋅2⋅3=13
Step 4.4.1.2.3
Rewrite the expression.
16z2=13
16z2=13
16z2=13
16z2=13
Step 4.5
Simplify the right side.
Step 4.5.1
One to any power is one.
16z2=1
16z2=1
16z2=1
Step 5
Step 5.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(16z2)=ln(1)
Step 5.2
Expand the left side.
Step 5.2.1
Expand ln(16z2) by moving z2 outside the logarithm.
z2ln(16)=ln(1)
Step 5.2.2
Combine z2 and ln(16).
zln(16)2=ln(1)
zln(16)2=ln(1)
Step 5.3
Simplify the right side.
Step 5.3.1
The natural logarithm of 1 is 0.
zln(16)2=0
zln(16)2=0
Step 5.4
Set the numerator equal to zero.
zln(16)=0
Step 5.5
Divide each term in zln(16)=0 by ln(16) and simplify.
Step 5.5.1
Divide each term in zln(16)=0 by ln(16).
zln(16)ln(16)=0ln(16)
Step 5.5.2
Simplify the left side.
Step 5.5.2.1
Cancel the common factor of ln(16).
Step 5.5.2.1.1
Cancel the common factor.
zln(16)ln(16)=0ln(16)
Step 5.5.2.1.2
Divide z by 1.
z=0ln(16)
z=0ln(16)
z=0ln(16)
Step 5.5.3
Simplify the right side.
Step 5.5.3.1
Rewrite ln(16) as ln(24).
z=0ln(24)
Step 5.5.3.2
Expand ln(24) by moving 4 outside the logarithm.
z=04ln(2)
Step 5.5.3.3
Cancel the common factor of 0 and 4.
Step 5.5.3.3.1
Factor 4 out of 0.
z=4(0)4ln(2)
Step 5.5.3.3.2
Cancel the common factors.
Step 5.5.3.3.2.1
Factor 4 out of 4ln(2).
z=4(0)4(ln(2))
Step 5.5.3.3.2.2
Cancel the common factor.
z=4⋅04ln(2)
Step 5.5.3.3.2.3
Rewrite the expression.
z=0ln(2)
z=0ln(2)
z=0ln(2)
Step 5.5.3.4
Divide 0 by ln(2).
z=0
z=0
z=0
z=0