Basic Math Examples

Simplify (1-h)(1-h)(2-h)-(1-h)
(1-h)(1-h)(2-h)-(1-h)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Expand (1-h)(1-h) using the FOIL Method.
Tap for more steps...
Step 1.1.1
Apply the distributive property.
(1(1-h)-h(1-h))(2-h)-(1-h)
Step 1.1.2
Apply the distributive property.
(11+1(-h)-h(1-h))(2-h)-(1-h)
Step 1.1.3
Apply the distributive property.
(11+1(-h)-h1-h(-h))(2-h)-(1-h)
(11+1(-h)-h1-h(-h))(2-h)-(1-h)
Step 1.2
Simplify and combine like terms.
Tap for more steps...
Step 1.2.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1
Multiply 1 by 1.
(1+1(-h)-h1-h(-h))(2-h)-(1-h)
Step 1.2.1.2
Multiply -h by 1.
(1-h-h1-h(-h))(2-h)-(1-h)
Step 1.2.1.3
Multiply -1 by 1.
(1-h-h-h(-h))(2-h)-(1-h)
Step 1.2.1.4
Rewrite using the commutative property of multiplication.
(1-h-h-1-1hh)(2-h)-(1-h)
Step 1.2.1.5
Multiply h by h by adding the exponents.
Tap for more steps...
Step 1.2.1.5.1
Move h.
(1-h-h-1-1(hh))(2-h)-(1-h)
Step 1.2.1.5.2
Multiply h by h.
(1-h-h-1-1h2)(2-h)-(1-h)
(1-h-h-1-1h2)(2-h)-(1-h)
Step 1.2.1.6
Multiply -1 by -1.
(1-h-h+1h2)(2-h)-(1-h)
Step 1.2.1.7
Multiply h2 by 1.
(1-h-h+h2)(2-h)-(1-h)
(1-h-h+h2)(2-h)-(1-h)
Step 1.2.2
Subtract h from -h.
(1-2h+h2)(2-h)-(1-h)
(1-2h+h2)(2-h)-(1-h)
Step 1.3
Expand (1-2h+h2)(2-h) by multiplying each term in the first expression by each term in the second expression.
12+1(-h)-2h2-2h(-h)+h22+h2(-h)-(1-h)
Step 1.4
Simplify each term.
Tap for more steps...
Step 1.4.1
Multiply 2 by 1.
2+1(-h)-2h2-2h(-h)+h22+h2(-h)-(1-h)
Step 1.4.2
Multiply -h by 1.
2-h-2h2-2h(-h)+h22+h2(-h)-(1-h)
Step 1.4.3
Multiply 2 by -2.
2-h-4h-2h(-h)+h22+h2(-h)-(1-h)
Step 1.4.4
Rewrite using the commutative property of multiplication.
2-h-4h-2-1hh+h22+h2(-h)-(1-h)
Step 1.4.5
Multiply h by h by adding the exponents.
Tap for more steps...
Step 1.4.5.1
Move h.
2-h-4h-2-1(hh)+h22+h2(-h)-(1-h)
Step 1.4.5.2
Multiply h by h.
2-h-4h-2-1h2+h22+h2(-h)-(1-h)
2-h-4h-2-1h2+h22+h2(-h)-(1-h)
Step 1.4.6
Multiply -2 by -1.
2-h-4h+2h2+h22+h2(-h)-(1-h)
Step 1.4.7
Move 2 to the left of h2.
2-h-4h+2h2+2h2+h2(-h)-(1-h)
Step 1.4.8
Rewrite using the commutative property of multiplication.
2-h-4h+2h2+2h2-h2h-(1-h)
Step 1.4.9
Multiply h2 by h by adding the exponents.
Tap for more steps...
Step 1.4.9.1
Move h.
2-h-4h+2h2+2h2-(hh2)-(1-h)
Step 1.4.9.2
Multiply h by h2.
Tap for more steps...
Step 1.4.9.2.1
Raise h to the power of 1.
2-h-4h+2h2+2h2-(h1h2)-(1-h)
Step 1.4.9.2.2
Use the power rule aman=am+n to combine exponents.
2-h-4h+2h2+2h2-h1+2-(1-h)
2-h-4h+2h2+2h2-h1+2-(1-h)
Step 1.4.9.3
Add 1 and 2.
2-h-4h+2h2+2h2-h3-(1-h)
2-h-4h+2h2+2h2-h3-(1-h)
2-h-4h+2h2+2h2-h3-(1-h)
Step 1.5
Subtract 4h from -h.
2-5h+2h2+2h2-h3-(1-h)
Step 1.6
Add 2h2 and 2h2.
2-5h+4h2-h3-(1-h)
Step 1.7
Apply the distributive property.
2-5h+4h2-h3-11--h
Step 1.8
Multiply -1 by 1.
2-5h+4h2-h3-1--h
Step 1.9
Multiply --h.
Tap for more steps...
Step 1.9.1
Multiply -1 by -1.
2-5h+4h2-h3-1+1h
Step 1.9.2
Multiply h by 1.
2-5h+4h2-h3-1+h
2-5h+4h2-h3-1+h
2-5h+4h2-h3-1+h
Step 2
Simplify by adding terms.
Tap for more steps...
Step 2.1
Subtract 1 from 2.
-5h+4h2-h3+1+h
Step 2.2
Add -5h and h.
4h2-h3+1-4h
Step 2.3
Simplify the expression.
Tap for more steps...
Step 2.3.1
Move 1.
4h2-h3-4h+1
Step 2.3.2
Reorder 4h2 and -h3.
-h3+4h2-4h+1
-h3+4h2-4h+1
-h3+4h2-4h+1
 [x2  12  π  xdx ]