Enter a problem...
Basic Math Examples
10-3=y⋅6.63⋅10-34⋅3⋅108633⋅10-910−3=y⋅6.63⋅10−34⋅3⋅108633⋅10−9
Step 1
Rewrite the equation as y⋅6.63⋅10-34⋅3⋅108633⋅10-9=10-3y⋅6.63⋅10−34⋅3⋅108633⋅10−9=10−3.
y⋅6.63⋅10-34⋅3⋅108633⋅10-9=10-3y⋅6.63⋅10−34⋅3⋅108633⋅10−9=10−3
Step 2
Step 2.1
Move the decimal point in 633633 to the left by 22 places and increase the power of 10-910−9 by 22.
y⋅6.63⋅10-34⋅3⋅1086.33⋅10-7=10-3y⋅6.63⋅10−34⋅3⋅1086.33⋅10−7=10−3
Step 2.2
Reduce the expression 3⋅1086.33⋅10-73⋅1086.33⋅10−7 by cancelling the common factors.
Step 2.2.1
Factor 10-710−7 out of 3⋅1083⋅108.
y⋅6.63⋅10-34⋅10-7⋅3⋅10156.33⋅10-7=10-3y⋅6.63⋅10−34⋅10−7⋅3⋅10156.33⋅10−7=10−3
Step 2.2.2
Factor 10-710−7 out of 6.33⋅10-76.33⋅10−7.
y⋅6.63⋅10-34⋅10-7⋅3⋅101510-7⋅6.33=10-3y⋅6.63⋅10−34⋅10−7⋅3⋅101510−7⋅6.33=10−3
Step 2.2.3
Cancel the common factor.
y⋅6.63⋅10-34⋅10-7⋅3⋅101510-7⋅6.33=10-3
Step 2.2.4
Rewrite the expression.
y⋅6.63⋅10-34⋅3⋅10156.33=10-3
y⋅6.63⋅10-34⋅3⋅10156.33=10-3
Step 2.3
Divide using scientific notation.
Step 2.3.1
Group coefficients together and exponents together to divide numbers in scientific notation.
y⋅6.63⋅10-34⋅((36.33)(10151))=10-3
Step 2.3.2
Divide 3 by 6.33.
y⋅6.63⋅10-34⋅(0.4739336410151)=10-3
Step 2.3.3
Divide 1015 by 1.
y⋅6.63⋅10-34⋅0.47393364⋅1015=10-3
y⋅6.63⋅10-34⋅0.47393364⋅1015=10-3
Step 2.4
Move the decimal point in 0.47393364 to the right by 1 place and decrease the power of 1015 by 1.
y⋅6.63⋅10-34⋅4.73933649⋅1014=10-3
Step 2.5
Multiply 4.73933649 by 6.63.
y⋅31.42180094⋅10-34⋅1014=10-3
Step 2.6
Multiply 10-34 by 1014 by adding the exponents.
Step 2.6.1
Move 1014.
y⋅(31.42180094⋅(1014⋅10-34))=10-3
Step 2.6.2
Use the power rule aman=am+n to combine exponents.
y⋅(31.42180094⋅1014-34)=10-3
Step 2.6.3
Subtract 34 from 14.
y⋅31.42180094⋅10-20=10-3
y⋅31.42180094⋅10-20=10-3
y⋅31.42180094⋅10-20=10-3
Step 3
Step 3.1
Divide each term in y⋅31.42180094⋅10-20=10-3 by 3.14218009⋅10-19.
y⋅31.42180094⋅10-203.14218009⋅10-19=10-33.14218009⋅10-19
Step 3.2
Simplify the left side.
Step 3.2.1
Move 10-20 to the denominator using the negative exponent rule b-n=1bn.
y⋅31.421800943.14218009⋅10-19⋅1020=10-33.14218009⋅10-19
Step 3.2.2
Simplify the denominator.
Step 3.2.2.1
Multiply 10-19 by 1020 by adding the exponents.
Step 3.2.2.1.1
Move 1020.
y⋅31.421800943.14218009⋅(1020⋅10-19)=10-33.14218009⋅10-19
Step 3.2.2.1.2
Use the power rule aman=am+n to combine exponents.
y⋅31.421800943.14218009⋅1020-19=10-33.14218009⋅10-19
Step 3.2.2.1.3
Subtract 19 from 20.
y⋅31.421800943.14218009⋅101=10-33.14218009⋅10-19
y⋅31.421800943.14218009⋅101=10-33.14218009⋅10-19
Step 3.2.2.2
Simplify 3.14218009⋅101.
y⋅31.421800943.14218009⋅10=10-33.14218009⋅10-19
y⋅31.421800943.14218009⋅10=10-33.14218009⋅10-19
Step 3.2.3
Multiply 3.14218009 by 10.
y⋅31.4218009431.42180094=10-33.14218009⋅10-19
Step 3.2.4
Cancel the common factor of 31.42180094.
Step 3.2.4.1
Cancel the common factor.
y⋅31.4218009431.42180094=10-33.14218009⋅10-19
Step 3.2.4.2
Divide y by 1.
y=10-33.14218009⋅10-19
y=10-33.14218009⋅10-19
y=10-33.14218009⋅10-19
Step 3.3
Simplify the right side.
Step 3.3.1
Divide using scientific notation.
Step 3.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
y=(13.14218009)(10-310-19)
Step 3.3.1.2
Divide 1 by 3.14218009.
y=0.3182503710-310-19
Step 3.3.1.3
Subtract the exponent from the denominator from the exponent of the numerator for the same base
y=0.31825037⋅10-3-19⋅-1
Step 3.3.1.4
Multiply -19 by -1.
y=0.31825037⋅10-3+19
Step 3.3.1.5
Add -3 and 19.
y=0.31825037⋅1016
y=0.31825037⋅1016
Step 3.3.2
Move the decimal point in 0.31825037 to the right by 1 place and decrease the power of 1016 by 1.
y=3.18250377⋅1015
y=3.18250377⋅1015
y=3.18250377⋅1015