Basic Math Examples

Solve for y -1/(y+4)=-1(y+4)
Step 1
Factor each term.
Tap for more steps...
Step 1.1
Apply the distributive property.
Step 1.2
Rewrite as .
Step 1.3
Multiply by .
Step 2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Remove parentheses.
Step 2.3
The LCM of one and any expression is the expression.
Step 3
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1
Move the leading negative in into the numerator.
Step 3.2.1.2
Cancel the common factor.
Step 3.2.1.3
Rewrite the expression.
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Apply the distributive property.
Step 3.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.3.1.2.1
Move .
Step 3.3.1.2.2
Multiply by .
Step 3.3.1.3
Multiply by .
Step 3.3.1.4
Apply the distributive property.
Step 3.3.1.5
Multiply by .
Step 3.3.2
Subtract from .
Step 4
Solve the equation.
Tap for more steps...
Step 4.1
Rewrite the equation as .
Step 4.2
Add to both sides of the equation.
Step 4.3
Add and .
Step 4.4
Factor the left side of the equation.
Tap for more steps...
Step 4.4.1
Factor out of .
Tap for more steps...
Step 4.4.1.1
Factor out of .
Step 4.4.1.2
Factor out of .
Step 4.4.1.3
Rewrite as .
Step 4.4.1.4
Factor out of .
Step 4.4.1.5
Factor out of .
Step 4.4.2
Factor.
Tap for more steps...
Step 4.4.2.1
Factor using the AC method.
Tap for more steps...
Step 4.4.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 4.4.2.1.2
Write the factored form using these integers.
Step 4.4.2.2
Remove unnecessary parentheses.
Step 4.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.6
Set equal to and solve for .
Tap for more steps...
Step 4.6.1
Set equal to .
Step 4.6.2
Subtract from both sides of the equation.
Step 4.7
Set equal to and solve for .
Tap for more steps...
Step 4.7.1
Set equal to .
Step 4.7.2
Subtract from both sides of the equation.
Step 4.8
The final solution is all the values that make true.