Enter a problem...
Basic Math Examples
y2-√y2-|y-2|-11=0y2−√y2−|y−2|−11=0
Step 1
Pull terms out from under the radical, assuming positive real numbers.
y2-y-|y-2|-11=0
Step 2
Step 2.1
Subtract y2 from both sides of the equation.
-y-|y-2|-11=-y2
Step 2.2
Add y to both sides of the equation.
-|y-2|-11=-y2+y
Step 2.3
Add 11 to both sides of the equation.
-|y-2|=-y2+y+11
-|y-2|=-y2+y+11
Step 3
Step 3.1
Divide each term in -|y-2|=-y2+y+11 by -1.
-|y-2|-1=-y2-1+y-1+11-1
Step 3.2
Simplify the left side.
Step 3.2.1
Dividing two negative values results in a positive value.
|y-2|1=-y2-1+y-1+11-1
Step 3.2.2
Divide |y-2| by 1.
|y-2|=-y2-1+y-1+11-1
|y-2|=-y2-1+y-1+11-1
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify each term.
Step 3.3.1.1
Dividing two negative values results in a positive value.
|y-2|=y21+y-1+11-1
Step 3.3.1.2
Divide y2 by 1.
|y-2|=y2+y-1+11-1
Step 3.3.1.3
Move the negative one from the denominator of y-1.
|y-2|=y2-1⋅y+11-1
Step 3.3.1.4
Rewrite -1⋅y as -y.
|y-2|=y2-y+11-1
Step 3.3.1.5
Divide 11 by -1.
|y-2|=y2-y-11
|y-2|=y2-y-11
|y-2|=y2-y-11
|y-2|=y2-y-11
Step 4
Remove the absolute value term. This creates a ± on the right side of the equation because |x|=±x.
y-2=±(y2-y-11)
Step 5
Step 5.1
First, use the positive value of the ± to find the first solution.
y-2=y2-y-11
Step 5.2
Since y is on the right side of the equation, switch the sides so it is on the left side of the equation.
y2-y-11=y-2
Step 5.3
Move all terms containing y to the left side of the equation.
Step 5.3.1
Subtract y from both sides of the equation.
y2-y-11-y=-2
Step 5.3.2
Subtract y from -y.
y2-2y-11=-2
y2-2y-11=-2
Step 5.4
Move all terms to the left side of the equation and simplify.
Step 5.4.1
Add 2 to both sides of the equation.
y2-2y-11+2=0
Step 5.4.2
Add -11 and 2.
y2-2y-9=0
y2-2y-9=0
Step 5.5
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.6
Substitute the values a=1, b=-2, and c=-9 into the quadratic formula and solve for y.
2±√(-2)2-4⋅(1⋅-9)2⋅1
Step 5.7
Simplify.
Step 5.7.1
Simplify the numerator.
Step 5.7.1.1
Raise -2 to the power of 2.
y=2±√4-4⋅1⋅-92⋅1
Step 5.7.1.2
Multiply -4⋅1⋅-9.
Step 5.7.1.2.1
Multiply -4 by 1.
y=2±√4-4⋅-92⋅1
Step 5.7.1.2.2
Multiply -4 by -9.
y=2±√4+362⋅1
y=2±√4+362⋅1
Step 5.7.1.3
Add 4 and 36.
y=2±√402⋅1
Step 5.7.1.4
Rewrite 40 as 22⋅10.
Step 5.7.1.4.1
Factor 4 out of 40.
y=2±√4(10)2⋅1
Step 5.7.1.4.2
Rewrite 4 as 22.
y=2±√22⋅102⋅1
y=2±√22⋅102⋅1
Step 5.7.1.5
Pull terms out from under the radical.
y=2±2√102⋅1
y=2±2√102⋅1
Step 5.7.2
Multiply 2 by 1.
y=2±2√102
Step 5.7.3
Simplify 2±2√102.
y=1±√10
y=1±√10
Step 5.8
The final answer is the combination of both solutions.
y=1+√10,1-√10
Step 5.9
Next, use the negative value of the ± to find the second solution.
y-2=-(y2-y-11)
Step 5.10
Since y is on the right side of the equation, switch the sides so it is on the left side of the equation.
-(y2-y-11)=y-2
Step 5.11
Simplify -(y2-y-11).
Step 5.11.1
Rewrite.
0+0-(y2-y-11)=y-2
Step 5.11.2
Simplify by adding zeros.
-(y2-y-11)=y-2
Step 5.11.3
Apply the distributive property.
-y2--y--11=y-2
Step 5.11.4
Simplify.
Step 5.11.4.1
Multiply --y.
Step 5.11.4.1.1
Multiply -1 by -1.
-y2+1y--11=y-2
Step 5.11.4.1.2
Multiply y by 1.
-y2+y--11=y-2
-y2+y--11=y-2
Step 5.11.4.2
Multiply -1 by -11.
-y2+y+11=y-2
-y2+y+11=y-2
-y2+y+11=y-2
Step 5.12
Move all terms containing y to the left side of the equation.
Step 5.12.1
Subtract y from both sides of the equation.
-y2+y+11-y=-2
Step 5.12.2
Combine the opposite terms in -y2+y+11-y.
Step 5.12.2.1
Subtract y from y.
-y2+0+11=-2
Step 5.12.2.2
Add -y2 and 0.
-y2+11=-2
-y2+11=-2
-y2+11=-2
Step 5.13
Move all terms not containing y to the right side of the equation.
Step 5.13.1
Subtract 11 from both sides of the equation.
-y2=-2-11
Step 5.13.2
Subtract 11 from -2.
-y2=-13
-y2=-13
Step 5.14
Divide each term in -y2=-13 by -1 and simplify.
Step 5.14.1
Divide each term in -y2=-13 by -1.
-y2-1=-13-1
Step 5.14.2
Simplify the left side.
Step 5.14.2.1
Dividing two negative values results in a positive value.
y21=-13-1
Step 5.14.2.2
Divide y2 by 1.
y2=-13-1
y2=-13-1
Step 5.14.3
Simplify the right side.
Step 5.14.3.1
Divide -13 by -1.
y2=13
y2=13
y2=13
Step 5.15
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±√13
Step 5.16
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.16.1
First, use the positive value of the ± to find the first solution.
y=√13
Step 5.16.2
Next, use the negative value of the ± to find the second solution.
y=-√13
Step 5.16.3
The complete solution is the result of both the positive and negative portions of the solution.
y=√13,-√13
y=√13,-√13
Step 5.17
The complete solution is the result of both the positive and negative portions of the solution.
y=1+√10,1-√10,√13,-√13
y=1+√10,1-√10,√13,-√13
Step 6
Exclude the solutions that do not make y2-√y2-|y-2|-11=0 true.
y=1+√10
Step 7
The result can be shown in multiple forms.
Exact Form:
y=1+√10
Decimal Form:
y=4.16227766…