Basic Math Examples

Solve for y -3(2y-4)-y=-3(y-3)
-3(2y-4)-y=-3(y-3)3(2y4)y=3(y3)
Step 1
Simplify -3(2y-4)-y3(2y4)y.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Apply the distributive property.
-3(2y)-3-4-y=-3(y-3)3(2y)34y=3(y3)
Step 1.1.2
Multiply 22 by -33.
-6y-3-4-y=-3(y-3)6y34y=3(y3)
Step 1.1.3
Multiply -33 by -44.
-6y+12-y=-3(y-3)6y+12y=3(y3)
-6y+12-y=-3(y-3)6y+12y=3(y3)
Step 1.2
Subtract yy from -6y6y.
-7y+12=-3(y-3)7y+12=3(y3)
-7y+12=-3(y-3)7y+12=3(y3)
Step 2
Simplify -3(y-3)3(y3).
Tap for more steps...
Step 2.1
Apply the distributive property.
-7y+12=-3y-3-37y+12=3y33
Step 2.2
Multiply -33 by -33.
-7y+12=-3y+97y+12=3y+9
-7y+12=-3y+97y+12=3y+9
Step 3
Move all terms containing yy to the left side of the equation.
Tap for more steps...
Step 3.1
Add 3y3y to both sides of the equation.
-7y+12+3y=97y+12+3y=9
Step 3.2
Add -7y7y and 3y3y.
-4y+12=94y+12=9
-4y+12=94y+12=9
Step 4
Move all terms not containing yy to the right side of the equation.
Tap for more steps...
Step 4.1
Subtract 1212 from both sides of the equation.
-4y=9-124y=912
Step 4.2
Subtract 1212 from 99.
-4y=-34y=3
-4y=-34y=3
Step 5
Divide each term in -4y=-34y=3 by -44 and simplify.
Tap for more steps...
Step 5.1
Divide each term in -4y=-34y=3 by -44.
-4y-4=-3-44y4=34
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of -44.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
-4y-4=-3-4
Step 5.2.1.2
Divide y by 1.
y=-3-4
y=-3-4
y=-3-4
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Dividing two negative values results in a positive value.
y=34
y=34
y=34
Step 6
The result can be shown in multiple forms.
Exact Form:
y=34
Decimal Form:
y=0.75
 [x2  12  π  xdx ]