Enter a problem...
Basic Math Examples
-3(2y-4)-y=-3(y-3)−3(2y−4)−y=−3(y−3)
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
-3(2y)-3⋅-4-y=-3(y-3)−3(2y)−3⋅−4−y=−3(y−3)
Step 1.1.2
Multiply 22 by -3−3.
-6y-3⋅-4-y=-3(y-3)−6y−3⋅−4−y=−3(y−3)
Step 1.1.3
Multiply -3−3 by -4−4.
-6y+12-y=-3(y-3)−6y+12−y=−3(y−3)
-6y+12-y=-3(y-3)−6y+12−y=−3(y−3)
Step 1.2
Subtract yy from -6y−6y.
-7y+12=-3(y-3)−7y+12=−3(y−3)
-7y+12=-3(y-3)−7y+12=−3(y−3)
Step 2
Step 2.1
Apply the distributive property.
-7y+12=-3y-3⋅-3−7y+12=−3y−3⋅−3
Step 2.2
Multiply -3−3 by -3−3.
-7y+12=-3y+9−7y+12=−3y+9
-7y+12=-3y+9−7y+12=−3y+9
Step 3
Step 3.1
Add 3y3y to both sides of the equation.
-7y+12+3y=9−7y+12+3y=9
Step 3.2
Add -7y−7y and 3y3y.
-4y+12=9−4y+12=9
-4y+12=9−4y+12=9
Step 4
Step 4.1
Subtract 1212 from both sides of the equation.
-4y=9-12−4y=9−12
Step 4.2
Subtract 1212 from 99.
-4y=-3−4y=−3
-4y=-3−4y=−3
Step 5
Step 5.1
Divide each term in -4y=-3−4y=−3 by -4−4.
-4y-4=-3-4−4y−4=−3−4
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of -4−4.
Step 5.2.1.1
Cancel the common factor.
-4y-4=-3-4
Step 5.2.1.2
Divide y by 1.
y=-3-4
y=-3-4
y=-3-4
Step 5.3
Simplify the right side.
Step 5.3.1
Dividing two negative values results in a positive value.
y=34
y=34
y=34
Step 6
The result can be shown in multiple forms.
Exact Form:
y=34
Decimal Form:
y=0.75