Enter a problem...
Basic Math Examples
78174=65145⋅(porportion)78174=65145⋅(porportion)
Step 1
Rewrite the equation as 65145⋅(porportion)=78174.
65145⋅(porportion)=78174
Step 2
Multiply both sides of the equation by 165145i.
165145i(65145⋅(porportion))=165145i⋅78174
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify 165145i(65145⋅(porportion)).
Step 3.1.1.1
Multiply p by p by adding the exponents.
Step 3.1.1.1.1
Move p.
165145i(65145⋅(p⋅porortion))=165145i⋅78174
Step 3.1.1.1.2
Multiply p by p.
165145i(65145⋅(p2orortion))=165145i⋅78174
165145i(65145⋅(p2orortion))=165145i⋅78174
Step 3.1.1.2
Multiply o by o by adding the exponents.
Step 3.1.1.2.1
Move o.
165145i(65145⋅(p2(o⋅o)r⋅rtion))=165145i⋅78174
Step 3.1.1.2.2
Multiply o by o.
165145i(65145⋅(p2o2r⋅rtion))=165145i⋅78174
165145i(65145⋅(p2o2r⋅rtion))=165145i⋅78174
Step 3.1.1.3
Multiply o2 by o by adding the exponents.
Step 3.1.1.3.1
Move o.
165145i(65145⋅(p2(o⋅o2)r⋅rtin))=165145i⋅78174
Step 3.1.1.3.2
Multiply o by o2.
Step 3.1.1.3.2.1
Raise o to the power of 1.
165145i(65145⋅(p2(o1o2)r⋅rtin))=165145i⋅78174
Step 3.1.1.3.2.2
Use the power rule aman=am+n to combine exponents.
165145i(65145⋅(p2o1+2r⋅rtin))=165145i⋅78174
165145i(65145⋅(p2o1+2r⋅rtin))=165145i⋅78174
Step 3.1.1.3.3
Add 1 and 2.
165145i(65145⋅(p2o3r⋅rtin))=165145i⋅78174
165145i(65145⋅(p2o3r⋅rtin))=165145i⋅78174
Step 3.1.1.4
Multiply r by r by adding the exponents.
Step 3.1.1.4.1
Move r.
165145i(65145⋅(p2o3(r⋅r)tin))=165145i⋅78174
Step 3.1.1.4.2
Multiply r by r.
165145i(65145⋅(p2o3r2tin))=165145i⋅78174
165145i(65145⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.5
Cancel the common factor of 65i145.
Step 3.1.1.5.1
Factor 65i145 out of 65145i.
165i145(-ii)(65145⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.5.2
Factor 65i145 out of 65145⋅(p2o3r2tin).
165i145(-ii)(65i145(-i⋅(p2o3r2tin)))=165145i⋅78174
Step 3.1.1.5.3
Cancel the common factor.
165i145(-ii)(65i145(-i⋅(p2o3r2tin)))=165145i⋅78174
Step 3.1.1.5.4
Rewrite the expression.
1-ii(-i⋅(p2o3r2tin))=165145i⋅78174
1-ii(-i⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.6
Raise i to the power of 1.
1-(i1i)(-i⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.7
Raise i to the power of 1.
1-(i1i1)(-i⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.8
Use the power rule aman=am+n to combine exponents.
1-i1+1(-i⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.9
Add 1 and 1.
1-i2(-i⋅(p2o3r2tin))=165145i⋅78174
Step 3.1.1.10
Raise i to the power of 1.
1-i2(-1⋅(p2o3r2t(i1i)n))=165145i⋅78174
Step 3.1.1.11
Raise i to the power of 1.
1-i2(-1⋅(p2o3r2t(i1i1)n))=165145i⋅78174
Step 3.1.1.12
Use the power rule aman=am+n to combine exponents.
1-i2(-1⋅(p2o3r2ti1+1n))=165145i⋅78174
Step 3.1.1.13
Combine fractions.
Step 3.1.1.13.1
Add 1 and 1.
1-i2(-1⋅(p2o3r2ti2n))=165145i⋅78174
Step 3.1.1.13.2
Combine 1-i2 and p2.
-1⋅(p2-i2o3r2ti2n)=165145i⋅78174
Step 3.1.1.13.3
Combine p2-i2 and o3.
-1⋅(p2o3-i2r2ti2n)=165145i⋅78174
Step 3.1.1.13.4
Combine p2o3-i2 and r2.
-1⋅(p2o3r2-i2ti2n)=165145i⋅78174
Step 3.1.1.13.5
Combine p2o3r2-i2 and t.
-1⋅(p2o3r2t-i2i2n)=165145i⋅78174
Step 3.1.1.13.6
Combine p2o3r2t-i2 and i2.
-1⋅(p2o3r2ti2-i2n)=165145i⋅78174
Step 3.1.1.13.7
Combine p2o3r2ti2-i2 and n.
-1⋅p2o3r2ti2n-i2=165145i⋅78174
-1⋅p2o3r2ti2n-i2=165145i⋅78174
Step 3.1.1.14
Simplify the numerator.
Step 3.1.1.14.1
Rewrite i2 as -1.
-1⋅p2o3r2t⋅-1n-i2=165145i⋅78174
Step 3.1.1.14.2
Factor out negative.
-1⋅-p2o3r2tn-i2=165145i⋅78174
-1⋅-p2o3r2tn-i2=165145i⋅78174
Step 3.1.1.15
Rewrite i2 as -1.
-1⋅-p2o3r2tn--1=165145i⋅78174
Step 3.1.1.16
Multiply -1 by -1.
-1⋅-p2o3r2tn1=165145i⋅78174
Step 3.1.1.17
Divide -p2o3r2tn by 1.
-1⋅(-p2o3r2tn)=165145i⋅78174
Step 3.1.1.18
Multiply -1(-p2o3r2tn).
Step 3.1.1.18.1
Multiply -1 by -1.
1(p2o3r2tn)=165145i⋅78174
Step 3.1.1.18.2
Multiply p2 by 1.
p2(o3r2tn)=165145i⋅78174
p2o3r2tn=165145i⋅78174
p2o3r2tn=165145i⋅78174
p2o3r2tn=165145i⋅78174
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify 165145i⋅78174.
Step 3.2.1.1
Cancel the common factor of 65 and 145.
Step 3.2.1.1.1
Factor 5 out of 65.
p2o3r2tn=15(13)145i⋅78174
Step 3.2.1.1.2
Cancel the common factors.
Step 3.2.1.1.2.1
Factor 5 out of 145.
p2o3r2tn=15⋅135⋅29i⋅78174
Step 3.2.1.1.2.2
Cancel the common factor.
p2o3r2tn=15⋅135⋅29i⋅78174
Step 3.2.1.1.2.3
Rewrite the expression.
p2o3r2tn=11329i⋅78174
p2o3r2tn=11329i⋅78174
p2o3r2tn=11329i⋅78174
Step 3.2.1.2
Multiply the numerator and denominator of 10.44827586i by the conjugate of 0.44827586i to make the denominator real.
p2o3r2tn=10.44827586i⋅ii78174
Step 3.2.1.3
Multiply.
Step 3.2.1.3.1
Combine.
p2o3r2tn=1i0.44827586ii⋅78174
Step 3.2.1.3.2
Multiply i by 1.
p2o3r2tn=i0.44827586ii⋅78174
Step 3.2.1.3.3
Simplify the denominator.
Step 3.2.1.3.3.1
Add parentheses.
p2o3r2tn=i0.44827586(ii)⋅78174
Step 3.2.1.3.3.2
Raise i to the power of 1.
p2o3r2tn=i0.44827586(i1i)⋅78174
Step 3.2.1.3.3.3
Raise i to the power of 1.
p2o3r2tn=i0.44827586(i1i1)⋅78174
Step 3.2.1.3.3.4
Use the power rule aman=am+n to combine exponents.
p2o3r2tn=i0.44827586i1+1⋅78174
Step 3.2.1.3.3.5
Add 1 and 1.
p2o3r2tn=i0.44827586i2⋅78174
Step 3.2.1.3.3.6
Rewrite i2 as -1.
p2o3r2tn=i0.44827586⋅-1⋅78174
p2o3r2tn=i0.44827586⋅-1⋅78174
p2o3r2tn=i0.44827586⋅-1⋅78174
Step 3.2.1.4
Multiply 0.44827586 by -1.
p2o3r2tn=i-0.44827586⋅78174
Step 3.2.1.5
Move the negative in front of the fraction.
p2o3r2tn=-i0.44827586⋅78174
Step 3.2.1.6
Multiply by 1.
p2o3r2tn=-1i0.44827586⋅78174
Step 3.2.1.7
Factor 0.44827586 out of 0.44827586.
p2o3r2tn=-1i0.44827586(1)⋅78174
Step 3.2.1.8
Separate fractions.
p2o3r2tn=-(10.44827586⋅i1)78174
Step 3.2.1.9
Simplify the expression.
Step 3.2.1.9.1
Divide 1 by 0.44827586.
p2o3r2tn=-(2.‾230769i1)78174
Step 3.2.1.9.2
Divide i by 1.
p2o3r2tn=-(2.‾230769i)78174
Step 3.2.1.9.3
Multiply 2.‾230769 by -1.
p2o3r2tn=-2.‾230769i78174
p2o3r2tn=-2.‾230769i78174
Step 3.2.1.10
Cancel the common factor of 78 and 174.
Step 3.2.1.10.1
Factor 6 out of 78.
p2o3r2tn=-2.‾230769i6(13)174
Step 3.2.1.10.2
Cancel the common factors.
Step 3.2.1.10.2.1
Factor 6 out of 174.
p2o3r2tn=-2.‾230769i6⋅136⋅29
Step 3.2.1.10.2.2
Cancel the common factor.
p2o3r2tn=-2.‾230769i6⋅136⋅29
Step 3.2.1.10.2.3
Rewrite the expression.
p2o3r2tn=-2.‾230769i1329
p2o3r2tn=-2.‾230769i1329
p2o3r2tn=-2.‾230769i1329
Step 3.2.1.11
Multiply -2.‾230769i1329.
Step 3.2.1.11.1
Combine 1329 and -2.‾230769.
p2o3r2tn=13⋅-2.‾23076929i
Step 3.2.1.11.2
Multiply 13 by -2.‾230769.
p2o3r2tn=-2929i
Step 3.2.1.11.3
Combine -2929 and i.
p2o3r2tn=-29i29
p2o3r2tn=-29i29
Step 3.2.1.12
Move the negative in front of the fraction.
p2o3r2tn=-29i29
Step 3.2.1.13
Factor 29 out of 29i.
p2o3r2tn=-29(i)29
Step 3.2.1.14
Factor 29 out of 29.
p2o3r2tn=-29(i)29(1)
Step 3.2.1.15
Separate fractions.
p2o3r2tn=-(2929⋅i1)
Step 3.2.1.16
Divide 29 by 29.
p2o3r2tn=-(1i1)
Step 3.2.1.17
Divide i by 1.
p2o3r2tn=-(1i)
Step 3.2.1.18
Multiply 1 by -1.
p2o3r2tn=-1i
p2o3r2tn=-1i
p2o3r2tn=-1i
p2o3r2tn=-1i
Step 4
Step 4.1
Divide each term in p2o3r2tn=-1i by p2o3r2n.
p2o3r2tnp2o3r2n=-1ip2o3r2n
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of p2.
Step 4.2.1.1
Cancel the common factor.
p2o3r2tnp2o3r2n=-1ip2o3r2n
Step 4.2.1.2
Rewrite the expression.
o3r2tno3r2n=-1ip2o3r2n
o3r2tno3r2n=-1ip2o3r2n
Step 4.2.2
Cancel the common factor of o3.
Step 4.2.2.1
Cancel the common factor.
o3r2tno3r2n=-1ip2o3r2n
Step 4.2.2.2
Rewrite the expression.
r2tnr2n=-1ip2o3r2n
r2tnr2n=-1ip2o3r2n
Step 4.2.3
Cancel the common factor of r2.
Step 4.2.3.1
Cancel the common factor.
r2tnr2n=-1ip2o3r2n
Step 4.2.3.2
Rewrite the expression.
tnn=-1ip2o3r2n
tnn=-1ip2o3r2n
Step 4.2.4
Cancel the common factor of n.
Step 4.2.4.1
Cancel the common factor.
tnn=-1ip2o3r2n
Step 4.2.4.2
Divide t by 1.
t=-1ip2o3r2n
t=-1ip2o3r2n
t=-1ip2o3r2n
Step 4.3
Simplify the right side.
Step 4.3.1
Move the negative in front of the fraction.
t=-1ip2o3r2n
t=-1ip2o3r2n
t=-1ip2o3r2n