Enter a problem...
Basic Math Examples
-5=Q-20-400⋅5800Q+202−5=Q−20−400⋅5800Q+202
Step 1
Rewrite the equation as Q-20-400⋅5800Q+202=-5.
Q-20-400⋅5800Q+202=-5
Step 2
Step 2.1
Multiply Q-20-400 by 5800Q+202.
(Q-20)⋅5800-400Q+202=-5
Step 2.2
Reduce the expression (Q-20)⋅5800-400Q+202 by cancelling the common factors.
Step 2.2.1
Factor 200 out of (Q-20)⋅5800.
200((Q-20)⋅29)-400Q+202=-5
Step 2.2.2
Factor 200 out of -400Q+202.
200((Q-20)⋅29)200(-2Q+202)=-5
Step 2.2.3
Cancel the common factor.
200((Q-20)⋅29)200(-2Q+202)=-5
Step 2.2.4
Rewrite the expression.
(Q-20)⋅29-2Q+202=-5
(Q-20)⋅29-2Q+202=-5
Step 2.3
Combine -2 and Q+202.
(Q-20)⋅29-2(Q+20)2=-5
(Q-20)⋅29-2(Q+20)2=-5
Step 3
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
-2(Q+20)2,1
Step 3.2
Simplify each term.
Step 3.2.1
Remove parentheses.
-2(Q+20)2,1
Step 3.2.2
Reduce the expression -2(Q+20)2 by cancelling the common factors.
Step 3.2.2.1
Factor 2 out of -2(Q+20).
2(-(Q+20))2,1
Step 3.2.2.2
Factor 2 out of 2.
2(-(Q+20))2(1),1
Step 3.2.2.3
Cancel the common factor.
2(-(Q+20))2⋅1,1
Step 3.2.2.4
Rewrite the expression.
-(Q+20)1,1
-(Q+20)1,1
Step 3.2.3
Divide -(Q+20) by 1.
-(Q+20),1
-(Q+20),1
Step 3.3
The LCM of one and any expression is the expression.
-(Q+20)
-(Q+20)
Step 4
Step 4.1
Multiply each term in (Q-20)⋅29-2(Q+20)2=-5 by -(Q+20).
(Q-20)⋅29-2(Q+20)2(-(Q+20))=-5(-(Q+20))
Step 4.2
Simplify the left side.
Step 4.2.1
Rewrite using the commutative property of multiplication.
-(Q-20)⋅29-2(Q+20)2(Q+20)=-5(-(Q+20))
Step 4.2.2
Cancel the common factor of -2 and 2.
Step 4.2.2.1
Factor 2 out of -2(Q+20).
-(Q-20)⋅292(-(Q+20))2(Q+20)=-5(-(Q+20))
Step 4.2.2.2
Cancel the common factors.
Step 4.2.2.2.1
Factor 2 out of 2.
-(Q-20)⋅292(-(Q+20))2(1)(Q+20)=-5(-(Q+20))
Step 4.2.2.2.2
Cancel the common factor.
-(Q-20)⋅292(-(Q+20))2⋅1(Q+20)=-5(-(Q+20))
Step 4.2.2.2.3
Rewrite the expression.
-(Q-20)⋅29-(Q+20)1(Q+20)=-5(-(Q+20))
Step 4.2.2.2.4
Divide -(Q+20) by 1.
-(Q-20)⋅29-(Q+20)(Q+20)=-5(-(Q+20))
-(Q-20)⋅29-(Q+20)(Q+20)=-5(-(Q+20))
-(Q-20)⋅29-(Q+20)(Q+20)=-5(-(Q+20))
Step 4.2.3
Cancel the common factor of Q+20.
Step 4.2.3.1
Move the leading negative in -(Q-20)⋅29-(Q+20) into the numerator.
-(Q-20)⋅29-(Q+20)(Q+20)=-5(-(Q+20))
Step 4.2.3.2
Factor Q+20 out of -(Q+20).
-(Q-20)⋅29(Q+20)⋅-1(Q+20)=-5(-(Q+20))
Step 4.2.3.3
Cancel the common factor.
-(Q-20)⋅29(Q+20)⋅-1(Q+20)=-5(-(Q+20))
Step 4.2.3.4
Rewrite the expression.
-(Q-20)⋅29-1=-5(-(Q+20))
-(Q-20)⋅29-1=-5(-(Q+20))
Step 4.2.4
Dividing two negative values results in a positive value.
(Q-20)⋅291=-5(-(Q+20))
Step 4.2.5
Divide (Q-20)⋅29 by 1.
(Q-20)⋅29=-5(-(Q+20))
Step 4.2.6
Apply the distributive property.
Q⋅29-20⋅29=-5(-(Q+20))
Step 4.2.7
Simplify the expression.
Step 4.2.7.1
Move 29 to the left of Q.
29⋅Q-20⋅29=-5(-(Q+20))
Step 4.2.7.2
Multiply -20 by 29.
29Q-580=-5(-(Q+20))
29Q-580=-5(-(Q+20))
29Q-580=-5(-(Q+20))
Step 4.3
Simplify the right side.
Step 4.3.1
Apply the distributive property.
29Q-580=-5(-Q-1⋅20)
Step 4.3.2
Multiply -1 by 20.
29Q-580=-5(-Q-20)
Step 4.3.3
Apply the distributive property.
29Q-580=-5(-Q)-5⋅-20
Step 4.3.4
Multiply.
Step 4.3.4.1
Multiply -1 by -5.
29Q-580=5Q-5⋅-20
Step 4.3.4.2
Multiply -5 by -20.
29Q-580=5Q+100
29Q-580=5Q+100
29Q-580=5Q+100
29Q-580=5Q+100
Step 5
Step 5.1
Move all terms containing Q to the left side of the equation.
Step 5.1.1
Subtract 5Q from both sides of the equation.
29Q-580-5Q=100
Step 5.1.2
Subtract 5Q from 29Q.
24Q-580=100
24Q-580=100
Step 5.2
Move all terms not containing Q to the right side of the equation.
Step 5.2.1
Add 580 to both sides of the equation.
24Q=100+580
Step 5.2.2
Add 100 and 580.
24Q=680
24Q=680
Step 5.3
Divide each term in 24Q=680 by 24 and simplify.
Step 5.3.1
Divide each term in 24Q=680 by 24.
24Q24=68024
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of 24.
Step 5.3.2.1.1
Cancel the common factor.
24Q24=68024
Step 5.3.2.1.2
Divide Q by 1.
Q=68024
Q=68024
Q=68024
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Cancel the common factor of 680 and 24.
Step 5.3.3.1.1
Factor 8 out of 680.
Q=8(85)24
Step 5.3.3.1.2
Cancel the common factors.
Step 5.3.3.1.2.1
Factor 8 out of 24.
Q=8⋅858⋅3
Step 5.3.3.1.2.2
Cancel the common factor.
Q=8⋅858⋅3
Step 5.3.3.1.2.3
Rewrite the expression.
Q=853
Q=853
Q=853
Q=853
Q=853
Q=853
Step 6
The result can be shown in multiple forms.
Exact Form:
Q=853
Decimal Form:
Q=28.‾3
Mixed Number Form:
Q=2813