Enter a problem...
Basic Math Examples
y(3y+2)=9
Step 1
Step 1.1
Simplify by multiplying through.
Step 1.1.1
Apply the distributive property.
y(3y)+y⋅2=9
Step 1.1.2
Reorder.
Step 1.1.2.1
Rewrite using the commutative property of multiplication.
3y⋅y+y⋅2=9
Step 1.1.2.2
Move 2 to the left of y.
3y⋅y+2⋅y=9
3y⋅y+2⋅y=9
3y⋅y+2⋅y=9
Step 1.2
Multiply y by y by adding the exponents.
Step 1.2.1
Move y.
3(y⋅y)+2⋅y=9
Step 1.2.2
Multiply y by y.
3y2+2⋅y=9
3y2+2y=9
3y2+2y=9
Step 2
Subtract 9 from both sides of the equation.
3y2+2y-9=0
Step 3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4
Substitute the values a=3, b=2, and c=-9 into the quadratic formula and solve for y.
-2±√22-4⋅(3⋅-9)2⋅3
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise 2 to the power of 2.
y=-2±√4-4⋅3⋅-92⋅3
Step 5.1.2
Multiply -4⋅3⋅-9.
Step 5.1.2.1
Multiply -4 by 3.
y=-2±√4-12⋅-92⋅3
Step 5.1.2.2
Multiply -12 by -9.
y=-2±√4+1082⋅3
y=-2±√4+1082⋅3
Step 5.1.3
Add 4 and 108.
y=-2±√1122⋅3
Step 5.1.4
Rewrite 112 as 42⋅7.
Step 5.1.4.1
Factor 16 out of 112.
y=-2±√16(7)2⋅3
Step 5.1.4.2
Rewrite 16 as 42.
y=-2±√42⋅72⋅3
y=-2±√42⋅72⋅3
Step 5.1.5
Pull terms out from under the radical.
y=-2±4√72⋅3
y=-2±4√72⋅3
Step 5.2
Multiply 2 by 3.
y=-2±4√76
Step 5.3
Simplify -2±4√76.
y=-1±2√73
y=-1±2√73
Step 6
The final answer is the combination of both solutions.
y=-1-2√73,-1+2√73
Step 7
The result can be shown in multiple forms.
Exact Form:
y=-1-2√73,-1+2√73
Decimal Form:
y=1.43050087…,-2.09716754…