Basic Math Examples

Solve for y y(3y+2)=9
y(3y+2)=9
Step 1
Simplify y(3y+2).
Tap for more steps...
Step 1.1
Simplify by multiplying through.
Tap for more steps...
Step 1.1.1
Apply the distributive property.
y(3y)+y2=9
Step 1.1.2
Reorder.
Tap for more steps...
Step 1.1.2.1
Rewrite using the commutative property of multiplication.
3yy+y2=9
Step 1.1.2.2
Move 2 to the left of y.
3yy+2y=9
3yy+2y=9
3yy+2y=9
Step 1.2
Multiply y by y by adding the exponents.
Tap for more steps...
Step 1.2.1
Move y.
3(yy)+2y=9
Step 1.2.2
Multiply y by y.
3y2+2y=9
3y2+2y=9
3y2+2y=9
Step 2
Subtract 9 from both sides of the equation.
3y2+2y-9=0
Step 3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4
Substitute the values a=3, b=2, and c=-9 into the quadratic formula and solve for y.
-2±22-4(3-9)23
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise 2 to the power of 2.
y=-2±4-43-923
Step 5.1.2
Multiply -43-9.
Tap for more steps...
Step 5.1.2.1
Multiply -4 by 3.
y=-2±4-12-923
Step 5.1.2.2
Multiply -12 by -9.
y=-2±4+10823
y=-2±4+10823
Step 5.1.3
Add 4 and 108.
y=-2±11223
Step 5.1.4
Rewrite 112 as 427.
Tap for more steps...
Step 5.1.4.1
Factor 16 out of 112.
y=-2±16(7)23
Step 5.1.4.2
Rewrite 16 as 42.
y=-2±42723
y=-2±42723
Step 5.1.5
Pull terms out from under the radical.
y=-2±4723
y=-2±4723
Step 5.2
Multiply 2 by 3.
y=-2±476
Step 5.3
Simplify -2±476.
y=-1±273
y=-1±273
Step 6
The final answer is the combination of both solutions.
y=-1-273,-1+273
Step 7
The result can be shown in multiple forms.
Exact Form:
y=-1-273,-1+273
Decimal Form:
y=1.43050087,-2.09716754
 [x2  12  π  xdx ]