Basic Math Examples

Solve for y 16y^2+zy+25=0
16y2+zy+25=016y2+zy+25=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=16a=16, b=zb=z, and c=25c=25 into the quadratic formula and solve for yy.
-z±z2-4(1625)216z±z24(1625)216
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Rewrite 4162541625 as (245)2(245)2.
y=-z±z2-(245)2216y=z±z2(245)2216
Step 3.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=za=z and b=245b=245.
y=-z±(z+245)(z-(245))216y=z±(z+245)(z(245))216
Step 3.1.3
Simplify.
Tap for more steps...
Step 3.1.3.1
Multiply 245245.
Tap for more steps...
Step 3.1.3.1.1
Multiply 22 by 44.
y=-z±(z+85)(z-(245))216y=z±(z+85)(z(245))216
Step 3.1.3.1.2
Multiply 88 by 55.
y=-z±(z+40)(z-(245))216y=z±(z+40)(z(245))216
y=-z±(z+40)(z-(245))216y=z±(z+40)(z(245))216
Step 3.1.3.2
Multiply -(245)(245).
Tap for more steps...
Step 3.1.3.2.1
Multiply 22 by 44.
y=-z±(z+40)(z-(85))216y=z±(z+40)(z(85))216
Step 3.1.3.2.2
Multiply 88 by 55.
y=-z±(z+40)(z-140)216y=z±(z+40)(z140)216
Step 3.1.3.2.3
Multiply -11 by 4040.
y=-z±(z+40)(z-40)216y=z±(z+40)(z40)216
y=-z±(z+40)(z-40)216y=z±(z+40)(z40)216
y=-z±(z+40)(z-40)216y=z±(z+40)(z40)216
y=-z±(z+40)(z-40)216y=z±(z+40)(z40)216
Step 3.2
Multiply 2 by 16.
y=-z±(z+40)(z-40)32
y=-z±(z+40)(z-40)32
Step 4
The final answer is the combination of both solutions.
y=-z-(z+40)(z-40)32
y=-z+(z+40)(z-40)32
 [x2  12  π  xdx ]