Enter a problem...
Basic Math Examples
16y2+zy+25=016y2+zy+25=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=16a=16, b=zb=z, and c=25c=25 into the quadratic formula and solve for yy.
-z±√z2-4⋅(16⋅25)2⋅16−z±√z2−4⋅(16⋅25)2⋅16
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Rewrite 4⋅16⋅254⋅16⋅25 as (2⋅4⋅5)2(2⋅4⋅5)2.
y=-z±√z2-(2⋅4⋅5)22⋅16y=−z±√z2−(2⋅4⋅5)22⋅16
Step 3.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=za=z and b=2⋅4⋅5b=2⋅4⋅5.
y=-z±√(z+2⋅4⋅5)(z-(2⋅4⋅5))2⋅16y=−z±√(z+2⋅4⋅5)(z−(2⋅4⋅5))2⋅16
Step 3.1.3
Simplify.
Step 3.1.3.1
Multiply 2⋅4⋅52⋅4⋅5.
Step 3.1.3.1.1
Multiply 22 by 44.
y=-z±√(z+8⋅5)(z-(2⋅4⋅5))2⋅16y=−z±√(z+8⋅5)(z−(2⋅4⋅5))2⋅16
Step 3.1.3.1.2
Multiply 88 by 55.
y=-z±√(z+40)(z-(2⋅4⋅5))2⋅16y=−z±√(z+40)(z−(2⋅4⋅5))2⋅16
y=-z±√(z+40)(z-(2⋅4⋅5))2⋅16y=−z±√(z+40)(z−(2⋅4⋅5))2⋅16
Step 3.1.3.2
Multiply -(2⋅4⋅5)−(2⋅4⋅5).
Step 3.1.3.2.1
Multiply 22 by 44.
y=-z±√(z+40)(z-(8⋅5))2⋅16y=−z±√(z+40)(z−(8⋅5))2⋅16
Step 3.1.3.2.2
Multiply 88 by 55.
y=-z±√(z+40)(z-1⋅40)2⋅16y=−z±√(z+40)(z−1⋅40)2⋅16
Step 3.1.3.2.3
Multiply -1−1 by 4040.
y=-z±√(z+40)(z-40)2⋅16y=−z±√(z+40)(z−40)2⋅16
y=-z±√(z+40)(z-40)2⋅16y=−z±√(z+40)(z−40)2⋅16
y=-z±√(z+40)(z-40)2⋅16y=−z±√(z+40)(z−40)2⋅16
y=-z±√(z+40)(z-40)2⋅16y=−z±√(z+40)(z−40)2⋅16
Step 3.2
Multiply 2 by 16.
y=-z±√(z+40)(z-40)32
y=-z±√(z+40)(z-40)32
Step 4
The final answer is the combination of both solutions.
y=-z-√(z+40)(z-40)32
y=-z+√(z+40)(z-40)32