Enter a problem...
Basic Math Examples
1000(9y-10)=50(688+100y)
Step 1
Step 1.1
Rewrite.
0+0+1000(9y-10)=50(688+100y)
Step 1.2
Simplify by adding zeros.
1000(9y-10)=50(688+100y)
Step 1.3
Apply the distributive property.
1000(9y)+1000⋅-10=50(688+100y)
Step 1.4
Multiply.
Step 1.4.1
Multiply 9 by 1000.
9000y+1000⋅-10=50(688+100y)
Step 1.4.2
Multiply 1000 by -10.
9000y-10000=50(688+100y)
9000y-10000=50(688+100y)
9000y-10000=50(688+100y)
Step 2
Step 2.1
Apply the distributive property.
9000y-10000=50⋅688+50(100y)
Step 2.2
Multiply.
Step 2.2.1
Multiply 50 by 688.
9000y-10000=34400+50(100y)
Step 2.2.2
Multiply 100 by 50.
9000y-10000=34400+5000y
9000y-10000=34400+5000y
9000y-10000=34400+5000y
Step 3
Step 3.1
Subtract 5000y from both sides of the equation.
9000y-10000-5000y=34400
Step 3.2
Subtract 5000y from 9000y.
4000y-10000=34400
4000y-10000=34400
Step 4
Step 4.1
Add 10000 to both sides of the equation.
4000y=34400+10000
Step 4.2
Add 34400 and 10000.
4000y=44400
4000y=44400
Step 5
Step 5.1
Divide each term in 4000y=44400 by 4000.
4000y4000=444004000
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of 4000.
Step 5.2.1.1
Cancel the common factor.
4000y4000=444004000
Step 5.2.1.2
Divide y by 1.
y=444004000
y=444004000
y=444004000
Step 5.3
Simplify the right side.
Step 5.3.1
Cancel the common factor of 44400 and 4000.
Step 5.3.1.1
Factor 400 out of 44400.
y=400(111)4000
Step 5.3.1.2
Cancel the common factors.
Step 5.3.1.2.1
Factor 400 out of 4000.
y=400⋅111400⋅10
Step 5.3.1.2.2
Cancel the common factor.
y=400⋅111400⋅10
Step 5.3.1.2.3
Rewrite the expression.
y=11110
y=11110
y=11110
y=11110
y=11110
Step 6
The result can be shown in multiple forms.
Exact Form:
y=11110
Decimal Form:
y=11.1
Mixed Number Form:
y=11110