Basic Math Examples

Solve for z z^2-z-1=0
z2-z-1=0z2z1=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=1a=1, b=-1b=1, and c=-1c=1 into the quadratic formula and solve for zz.
1±(-1)2-4(1-1)211±(1)24(11)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise -11 to the power of 22.
z=1±1-41-121z=1±141121
Step 3.1.2
Multiply -41-1411.
Tap for more steps...
Step 3.1.2.1
Multiply -44 by 11.
z=1±1-4-121z=1±14121
Step 3.1.2.2
Multiply -44 by -11.
z=1±1+421z=1±1+421
z=1±1+421z=1±1+421
Step 3.1.3
Add 11 and 44.
z=1±521z=1±521
z=1±521z=1±521
Step 3.2
Multiply 22 by 11.
z=1±52z=1±52
z=1±52z=1±52
Step 4
The final answer is the combination of both solutions.
z=1+52,1-52z=1+52,152
Step 5
The result can be shown in multiple forms.
Exact Form:
z=1+52,1-52z=1+52,152
Decimal Form:
z=1.61803398,-0.61803398z=1.61803398,0.61803398
 [x2  12  π  xdx ]  x2  12  π  xdx