Enter a problem...
Basic Math Examples
z2-z-1=0z2−z−1=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=1a=1, b=-1b=−1, and c=-1c=−1 into the quadratic formula and solve for zz.
1±√(-1)2-4⋅(1⋅-1)2⋅11±√(−1)2−4⋅(1⋅−1)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -1−1 to the power of 22.
z=1±√1-4⋅1⋅-12⋅1z=1±√1−4⋅1⋅−12⋅1
Step 3.1.2
Multiply -4⋅1⋅-1−4⋅1⋅−1.
Step 3.1.2.1
Multiply -4−4 by 11.
z=1±√1-4⋅-12⋅1z=1±√1−4⋅−12⋅1
Step 3.1.2.2
Multiply -4−4 by -1−1.
z=1±√1+42⋅1z=1±√1+42⋅1
z=1±√1+42⋅1z=1±√1+42⋅1
Step 3.1.3
Add 11 and 44.
z=1±√52⋅1z=1±√52⋅1
z=1±√52⋅1z=1±√52⋅1
Step 3.2
Multiply 22 by 11.
z=1±√52z=1±√52
z=1±√52z=1±√52
Step 4
The final answer is the combination of both solutions.
z=1+√52,1-√52z=1+√52,1−√52
Step 5
The result can be shown in multiple forms.
Exact Form:
z=1+√52,1-√52z=1+√52,1−√52
Decimal Form:
z=1.61803398…,-0.61803398…z=1.61803398…,−0.61803398…