Enter a problem...
Basic Math Examples
|(i+2√2)⋅z|=6
Step 1
Remove the absolute value term. This creates a ± on the right side of the equation because |x|=±x.
(i+2√2)⋅z=±6
Step 2
Step 2.1
First, use the positive value of the ± to find the first solution.
(i+2√2)⋅z=6
Step 2.2
Divide each term in (i+2√2)⋅z=6 by i+2√2 and simplify.
Step 2.2.1
Divide each term in (i+2√2)⋅z=6 by i+2√2.
(i+2√2)⋅zi+2√2=6i+2√2
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of i+2√2.
Step 2.2.2.1.1
Cancel the common factor.
(i+2√2)⋅zi+2√2=6i+2√2
Step 2.2.2.1.2
Divide z by 1.
z=6i+2√2
z=6i+2√2
z=6i+2√2
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Multiply the numerator and denominator of 62.82842712+1i by the conjugate of 2.82842712+1i to make the denominator real.
z=62.82842712+1i⋅2.82842712-i2.82842712-i
Step 2.2.3.2
Multiply.
Step 2.2.3.2.1
Combine.
z=6(2.82842712-i)(2.82842712+1i)(2.82842712-i)
Step 2.2.3.2.2
Simplify the numerator.
Step 2.2.3.2.2.1
Apply the distributive property.
z=6⋅2.82842712+6(-i)(2.82842712+1i)(2.82842712-i)
Step 2.2.3.2.2.2
Multiply 6 by 2.82842712.
z=16.97056274+6(-i)(2.82842712+1i)(2.82842712-i)
Step 2.2.3.2.2.3
Multiply -1 by 6.
z=16.97056274-6i(2.82842712+1i)(2.82842712-i)
z=16.97056274-6i(2.82842712+1i)(2.82842712-i)
Step 2.2.3.2.3
Simplify the denominator.
Step 2.2.3.2.3.1
Expand (2.82842712+1i)(2.82842712-i) using the FOIL Method.
Step 2.2.3.2.3.1.1
Apply the distributive property.
z=16.97056274-6i2.82842712(2.82842712-i)+1i(2.82842712-i)
Step 2.2.3.2.3.1.2
Apply the distributive property.
z=16.97056274-6i2.82842712⋅2.82842712+2.82842712(-i)+1i(2.82842712-i)
Step 2.2.3.2.3.1.3
Apply the distributive property.
z=16.97056274-6i2.82842712⋅2.82842712+2.82842712(-i)+1i⋅2.82842712+1i(-i)
z=16.97056274-6i2.82842712⋅2.82842712+2.82842712(-i)+1i⋅2.82842712+1i(-i)
Step 2.2.3.2.3.2
Simplify.
Step 2.2.3.2.3.2.1
Multiply 2.82842712 by 2.82842712.
z=16.97056274-6i8+2.82842712(-i)+1i⋅2.82842712+1i(-i)
Step 2.2.3.2.3.2.2
Multiply -1 by 2.82842712.
z=16.97056274-6i8-2.82842712i+1i⋅2.82842712+1i(-i)
Step 2.2.3.2.3.2.3
Multiply 2.82842712 by 1.
z=16.97056274-6i8-2.82842712i+2.82842712i+1i(-i)
Step 2.2.3.2.3.2.4
Multiply -1 by 1.
z=16.97056274-6i8-2.82842712i+2.82842712i-ii
Step 2.2.3.2.3.2.5
Raise i to the power of 1.
z=16.97056274-6i8-2.82842712i+2.82842712i-(i1i)
Step 2.2.3.2.3.2.6
Raise i to the power of 1.
z=16.97056274-6i8-2.82842712i+2.82842712i-(i1i1)
Step 2.2.3.2.3.2.7
Use the power rule aman=am+n to combine exponents.
z=16.97056274-6i8-2.82842712i+2.82842712i-i1+1
Step 2.2.3.2.3.2.8
Add 1 and 1.
z=16.97056274-6i8-2.82842712i+2.82842712i-i2
Step 2.2.3.2.3.2.9
Add -2.82842712i and 2.82842712i.
z=16.97056274-6i8+0i-i2
z=16.97056274-6i8+0i-i2
Step 2.2.3.2.3.3
Simplify each term.
Step 2.2.3.2.3.3.1
Multiply 0 by i.
z=16.97056274-6i8+0-i2
Step 2.2.3.2.3.3.2
Rewrite i2 as -1.
z=16.97056274-6i8+0--1
Step 2.2.3.2.3.3.3
Multiply -1 by -1.
z=16.97056274-6i8+0+1
z=16.97056274-6i8+0+1
Step 2.2.3.2.3.4
Add 8 and 0.
z=16.97056274-6i8+1
Step 2.2.3.2.3.5
Add 8 and 1.
z=16.97056274-6i9
z=16.97056274-6i9
z=16.97056274-6i9
Step 2.2.3.3
Rewrite 16.97056274 as 1(16.97056274).
z=1(16.97056274)-6i9
Step 2.2.3.4
Factor 1 out of -6i.
z=1(16.97056274)+1(-6i)9
Step 2.2.3.5
Factor 1 out of 1(16.97056274)+1(-6i).
z=1(16.97056274-6i)9
Step 2.2.3.6
Factor 9 out of 9.
z=1(16.97056274-6i)9(1)
Step 2.2.3.7
Separate fractions.
z=19⋅16.97056274-6i1
Step 2.2.3.8
Simplify the expression.
Step 2.2.3.8.1
Divide 1 by 9.
z=0.1111111116.97056274-6i1
Step 2.2.3.8.2
Divide 16.97056274-6i by 1.
z=0.11111111(16.97056274-6i)
z=0.11111111(16.97056274-6i)
Step 2.2.3.9
Apply the distributive property.
z=0.11111111⋅16.97056274+0.11111111(-6i)
Step 2.2.3.10
Multiply.
Step 2.2.3.10.1
Multiply 0.11111111 by 16.97056274.
z=1.88561808+0.11111111(-6i)
Step 2.2.3.10.2
Multiply -6 by 0.11111111.
z=1.88561808-0.66666666i
z=1.88561808-0.66666666i
z=1.88561808-0.66666666i
z=1.88561808-0.66666666i
Step 2.3
Next, use the negative value of the ± to find the second solution.
(i+2√2)⋅z=-6
Step 2.4
Divide each term in (i+2√2)⋅z=-6 by i+2√2 and simplify.
Step 2.4.1
Divide each term in (i+2√2)⋅z=-6 by i+2√2.
(i+2√2)⋅zi+2√2=-6i+2√2
Step 2.4.2
Simplify the left side.
Step 2.4.2.1
Cancel the common factor of i+2√2.
Step 2.4.2.1.1
Cancel the common factor.
(i+2√2)⋅zi+2√2=-6i+2√2
Step 2.4.2.1.2
Divide z by 1.
z=-6i+2√2
z=-6i+2√2
z=-6i+2√2
Step 2.4.3
Simplify the right side.
Step 2.4.3.1
Multiply the numerator and denominator of -62.82842712+1i by the conjugate of 2.82842712+1i to make the denominator real.
z=-62.82842712+1i⋅2.82842712-i2.82842712-i
Step 2.4.3.2
Multiply.
Step 2.4.3.2.1
Combine.
z=-6(2.82842712-i)(2.82842712+1i)(2.82842712-i)
Step 2.4.3.2.2
Simplify the numerator.
Step 2.4.3.2.2.1
Apply the distributive property.
z=-6⋅2.82842712-6(-i)(2.82842712+1i)(2.82842712-i)
Step 2.4.3.2.2.2
Multiply -6 by 2.82842712.
z=-16.97056274-6(-i)(2.82842712+1i)(2.82842712-i)
Step 2.4.3.2.2.3
Multiply -1 by -6.
z=-16.97056274+6i(2.82842712+1i)(2.82842712-i)
z=-16.97056274+6i(2.82842712+1i)(2.82842712-i)
Step 2.4.3.2.3
Simplify the denominator.
Step 2.4.3.2.3.1
Expand (2.82842712+1i)(2.82842712-i) using the FOIL Method.
Step 2.4.3.2.3.1.1
Apply the distributive property.
z=-16.97056274+6i2.82842712(2.82842712-i)+1i(2.82842712-i)
Step 2.4.3.2.3.1.2
Apply the distributive property.
z=-16.97056274+6i2.82842712⋅2.82842712+2.82842712(-i)+1i(2.82842712-i)
Step 2.4.3.2.3.1.3
Apply the distributive property.
z=-16.97056274+6i2.82842712⋅2.82842712+2.82842712(-i)+1i⋅2.82842712+1i(-i)
z=-16.97056274+6i2.82842712⋅2.82842712+2.82842712(-i)+1i⋅2.82842712+1i(-i)
Step 2.4.3.2.3.2
Simplify.
Step 2.4.3.2.3.2.1
Multiply 2.82842712 by 2.82842712.
z=-16.97056274+6i8+2.82842712(-i)+1i⋅2.82842712+1i(-i)
Step 2.4.3.2.3.2.2
Multiply -1 by 2.82842712.
z=-16.97056274+6i8-2.82842712i+1i⋅2.82842712+1i(-i)
Step 2.4.3.2.3.2.3
Multiply 2.82842712 by 1.
z=-16.97056274+6i8-2.82842712i+2.82842712i+1i(-i)
Step 2.4.3.2.3.2.4
Multiply -1 by 1.
z=-16.97056274+6i8-2.82842712i+2.82842712i-ii
Step 2.4.3.2.3.2.5
Raise i to the power of 1.
z=-16.97056274+6i8-2.82842712i+2.82842712i-(i1i)
Step 2.4.3.2.3.2.6
Raise i to the power of 1.
z=-16.97056274+6i8-2.82842712i+2.82842712i-(i1i1)
Step 2.4.3.2.3.2.7
Use the power rule aman=am+n to combine exponents.
z=-16.97056274+6i8-2.82842712i+2.82842712i-i1+1
Step 2.4.3.2.3.2.8
Add 1 and 1.
z=-16.97056274+6i8-2.82842712i+2.82842712i-i2
Step 2.4.3.2.3.2.9
Add -2.82842712i and 2.82842712i.
z=-16.97056274+6i8+0i-i2
z=-16.97056274+6i8+0i-i2
Step 2.4.3.2.3.3
Simplify each term.
Step 2.4.3.2.3.3.1
Multiply 0 by i.
z=-16.97056274+6i8+0-i2
Step 2.4.3.2.3.3.2
Rewrite i2 as -1.
z=-16.97056274+6i8+0--1
Step 2.4.3.2.3.3.3
Multiply -1 by -1.
z=-16.97056274+6i8+0+1
z=-16.97056274+6i8+0+1
Step 2.4.3.2.3.4
Add 8 and 0.
z=-16.97056274+6i8+1
Step 2.4.3.2.3.5
Add 8 and 1.
z=-16.97056274+6i9
z=-16.97056274+6i9
z=-16.97056274+6i9
Step 2.4.3.3
Rewrite -16.97056274 as 1(-16.97056274).
z=1(-16.97056274)+6i9
Step 2.4.3.4
Factor 1 out of 6i.
z=1(-16.97056274)+1(6i)9
Step 2.4.3.5
Factor 1 out of 1(-16.97056274)+1(6i).
z=1(-16.97056274+6i)9
Step 2.4.3.6
Factor 9 out of 9.
z=1(-16.97056274+6i)9(1)
Step 2.4.3.7
Separate fractions.
z=19⋅-16.97056274+6i1
Step 2.4.3.8
Simplify the expression.
Step 2.4.3.8.1
Divide 1 by 9.
z=0.11111111-16.97056274+6i1
Step 2.4.3.8.2
Divide -16.97056274+6i by 1.
z=0.11111111(-16.97056274+6i)
z=0.11111111(-16.97056274+6i)
Step 2.4.3.9
Apply the distributive property.
z=0.11111111⋅-16.97056274+0.11111111(6i)
Step 2.4.3.10
Multiply.
Step 2.4.3.10.1
Multiply 0.11111111 by -16.97056274.
z=-1.88561808+0.11111111(6i)
Step 2.4.3.10.2
Multiply 6 by 0.11111111.
z=-1.88561808+0.66666666i
z=-1.88561808+0.66666666i
z=-1.88561808+0.66666666i
z=-1.88561808+0.66666666i
Step 2.5
The complete solution is the result of both the positive and negative portions of the solution.
z=1.88561808-0.66666666i,-1.88561808+0.66666666i
z=1.88561808-0.66666666i,-1.88561808+0.66666666i