Enter a problem...
Basic Math Examples
Step 1
Step 1.1
Rewrite the expression using the negative exponent rule .
Step 1.2
Rewrite the expression using the negative exponent rule .
Step 1.3
Combine and .
Step 1.4
Move the negative in front of the fraction.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.5
The factor for is itself.
occurs time.
Step 2.6
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of .
Step 3.2.1.1.1
Cancel the common factor.
Step 3.2.1.1.2
Rewrite the expression.
Step 3.2.1.2
Cancel the common factor of .
Step 3.2.1.2.1
Move the leading negative in into the numerator.
Step 3.2.1.2.2
Factor out of .
Step 3.2.1.2.3
Cancel the common factor.
Step 3.2.1.2.4
Rewrite the expression.
Step 4
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Factor the left side of the equation.
Step 4.2.1
Factor by grouping.
Step 4.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.2.1.1.1
Factor out of .
Step 4.2.1.1.2
Rewrite as plus
Step 4.2.1.1.3
Apply the distributive property.
Step 4.2.1.1.4
Multiply by .
Step 4.2.1.2
Factor out the greatest common factor from each group.
Step 4.2.1.2.1
Group the first two terms and the last two terms.
Step 4.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.2.2
Multiply by .
Step 4.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.4
Set equal to and solve for .
Step 4.4.1
Set equal to .
Step 4.4.2
Solve for .
Step 4.4.2.1
Subtract from both sides of the equation.
Step 4.4.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.4.2.3
Simplify the exponent.
Step 4.4.2.3.1
Simplify the left side.
Step 4.4.2.3.1.1
Simplify .
Step 4.4.2.3.1.1.1
Multiply the exponents in .
Step 4.4.2.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 4.4.2.3.1.1.1.2
Cancel the common factor of .
Step 4.4.2.3.1.1.1.2.1
Cancel the common factor.
Step 4.4.2.3.1.1.1.2.2
Rewrite the expression.
Step 4.4.2.3.1.1.2
Simplify.
Step 4.4.2.3.2
Simplify the right side.
Step 4.4.2.3.2.1
Raise to the power of .
Step 4.4.2.4
Move all terms not containing to the right side of the equation.
Step 4.4.2.4.1
Subtract from both sides of the equation.
Step 4.4.2.4.2
Subtract from .
Step 4.5
Set equal to and solve for .
Step 4.5.1
Set equal to .
Step 4.5.2
Solve for .
Step 4.5.2.1
Subtract from both sides of the equation.
Step 4.5.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.5.2.3
Simplify the exponent.
Step 4.5.2.3.1
Simplify the left side.
Step 4.5.2.3.1.1
Simplify .
Step 4.5.2.3.1.1.1
Apply the product rule to .
Step 4.5.2.3.1.1.2
Raise to the power of .
Step 4.5.2.3.1.1.3
Multiply the exponents in .
Step 4.5.2.3.1.1.3.1
Apply the power rule and multiply exponents, .
Step 4.5.2.3.1.1.3.2
Cancel the common factor of .
Step 4.5.2.3.1.1.3.2.1
Cancel the common factor.
Step 4.5.2.3.1.1.3.2.2
Rewrite the expression.
Step 4.5.2.3.1.1.4
Simplify.
Step 4.5.2.3.1.1.5
Apply the distributive property.
Step 4.5.2.3.1.1.6
Multiply by .
Step 4.5.2.3.2
Simplify the right side.
Step 4.5.2.3.2.1
Raise to the power of .
Step 4.5.2.4
Solve for .
Step 4.5.2.4.1
Move all terms not containing to the right side of the equation.
Step 4.5.2.4.1.1
Add to both sides of the equation.
Step 4.5.2.4.1.2
Add and .
Step 4.5.2.4.2
Divide each term in by and simplify.
Step 4.5.2.4.2.1
Divide each term in by .
Step 4.5.2.4.2.2
Simplify the left side.
Step 4.5.2.4.2.2.1
Cancel the common factor of .
Step 4.5.2.4.2.2.1.1
Cancel the common factor.
Step 4.5.2.4.2.2.1.2
Divide by .
Step 4.5.2.4.2.3
Simplify the right side.
Step 4.5.2.4.2.3.1
Move the negative in front of the fraction.
Step 4.6
The final solution is all the values that make true.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: