Enter a problem...
Basic Math Examples
13.179⋅103=11.017⋅106+1z
Step 1
Rewrite the equation as 11.017⋅106+1z=13.179⋅103.
11.017⋅106+1z=13.179⋅103
Step 2
Step 2.1
Divide using scientific notation.
Step 2.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
(11.017)(1106)+1z=13.179⋅103
Step 2.1.2
Divide 1 by 1.017.
0.983284161106+1z=13.179⋅103
Step 2.1.3
Move 106 to the numerator using the negative exponent rule 1bn=b-n.
0.98328416⋅10-6+1z=13.179⋅103
0.98328416⋅10-6+1z=13.179⋅103
Step 2.2
Move the decimal point in 0.98328416 to the right by 1 place and decrease the power of 10-6 by 1.
9.83284169⋅10-7+1z=13.179⋅103
9.83284169⋅10-7+1z=13.179⋅103
Step 3
Step 3.1
Divide using scientific notation.
Step 3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
9.83284169⋅10-7+1z=(13.179)(1103)
Step 3.1.2
Divide 1 by 3.179.
9.83284169⋅10-7+1z=0.314564321103
Step 3.1.3
Move 103 to the numerator using the negative exponent rule 1bn=b-n.
9.83284169⋅10-7+1z=0.31456432⋅10-3
9.83284169⋅10-7+1z=0.31456432⋅10-3
Step 3.2
Move the decimal point in 0.31456432 to the right by 1 place and decrease the power of 10-3 by 1.
9.83284169⋅10-7+1z=3.14564328⋅10-4
9.83284169⋅10-7+1z=3.14564328⋅10-4
Step 4
Step 4.1
Subtract 9.83284169⋅10-7 from both sides of the equation.
1z=3.14564328⋅10-4-9.83284169⋅10-7
Step 4.2
Move the decimal point in -9.83284169 to the left by 3 places and increase the power of 10-7 by 3.
1z=3.14564328⋅10-4-0.00983284⋅10-4
Step 4.3
Factor 10-4 out of 3.14564328⋅10-4-0.00983284⋅10-4.
1z=(3.14564328-0.00983284)⋅10-4
Step 4.4
Subtract 0.00983284 from 3.14564328.
1z=3.13581044⋅10-4
1z=3.13581044⋅10-4
Step 5
Step 5.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
z,1,1
Step 5.2
The LCM of one and any expression is the expression.
z
z
Step 6
Step 6.1
Multiply each term in 1z=3.13581044⋅10-4 by z.
1zz=3.13581044⋅10-4z
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of z.
Step 6.2.1.1
Cancel the common factor.
1zz=3.13581044⋅10-4z
Step 6.2.1.2
Rewrite the expression.
1=3.13581044⋅10-4z
1=3.13581044⋅10-4z
1=3.13581044⋅10-4z
Step 6.3
Simplify the right side.
Step 6.3.1
Reorder factors in 3.13581044⋅10-4z.
1=3.13581044z⋅10-4
1=3.13581044z⋅10-4
1=3.13581044z⋅10-4
Step 7
Step 7.1
Rewrite the equation as 3.13581044z⋅10-4=1.
3.13581044z⋅10-4=1
Step 7.2
Divide each term in 3.13581044z⋅10-4=1 by 3.13581044⋅10-4 and simplify.
Step 7.2.1
Divide each term in 3.13581044z⋅10-4=1 by 3.13581044⋅10-4.
3.13581044z⋅10-43.13581044⋅10-4=13.13581044⋅10-4
Step 7.2.2
Simplify the left side.
Step 7.2.2.1
Cancel the common factor of 3.13581044.
Step 7.2.2.1.1
Cancel the common factor.
3.13581044z⋅10-43.13581044⋅10-4=13.13581044⋅10-4
Step 7.2.2.1.2
Rewrite the expression.
z⋅10-410-4=13.13581044⋅10-4
z⋅10-410-4=13.13581044⋅10-4
Step 7.2.2.2
Cancel the common factor of 10-4.
Step 7.2.2.2.1
Cancel the common factor.
z⋅10-410-4=13.13581044⋅10-4
Step 7.2.2.2.2
Divide z by 1.
z=13.13581044⋅10-4
z=13.13581044⋅10-4
z=13.13581044⋅10-4
Step 7.2.3
Simplify the right side.
Step 7.2.3.1
Divide using scientific notation.
Step 7.2.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
z=(13.13581044)(110-4)
Step 7.2.3.1.2
Divide 1 by 3.13581044.
z=0.31889682110-4
Step 7.2.3.1.3
Move 10-4 to the numerator using the negative exponent rule 1b-n=bn.
z=0.31889682⋅104
z=0.31889682⋅104
Step 7.2.3.2
Move the decimal point in 0.31889682 to the right by 1 place and decrease the power of 104 by 1.
z=3.18896826⋅103
z=3.18896826⋅103
z=3.18896826⋅103
z=3.18896826⋅103
Step 8
The result can be shown in multiple forms.
Scientific Notation:
z=3.18896826⋅103
Expanded Form:
z=3188.96826954