Enter a problem...
Basic Math Examples
12345678910Z⋅26=6412345678910Z⋅26=64
Step 1
Step 1.1
Simplify the denominator.
Step 1.1.1
Multiply the numerator by the reciprocal of the denominator.
123456789Z10⋅26=64
Step 1.1.2
Combine 9 and Z10.
123456789Z10⋅26=64
123456789Z10⋅26=64
Step 1.2
Simplify the denominator.
Step 1.2.1
Multiply the numerator by the reciprocal of the denominator.
12345678109Z⋅26=64
Step 1.2.2
Multiply 8109Z.
Step 1.2.2.1
Combine 8 and 109Z.
12345678⋅109Z⋅26=64
Step 1.2.2.2
Multiply 8 by 10.
1234567809Z⋅26=64
1234567809Z⋅26=64
1234567809Z⋅26=64
Step 1.3
Simplify the denominator.
Step 1.3.1
Multiply the numerator by the reciprocal of the denominator.
12345679Z80⋅26=64
Step 1.3.2
Multiply 79Z80.
Step 1.3.2.1
Combine 7 and 9Z80.
1234567(9Z)80⋅26=64
Step 1.3.2.2
Multiply 9 by 7.
12345663Z80⋅26=64
12345663Z80⋅26=64
12345663Z80⋅26=64
Step 1.4
Simplify the denominator.
Step 1.4.1
Multiply the numerator by the reciprocal of the denominator.
1234568063Z⋅26=64
Step 1.4.2
Cancel the common factor of 3.
Step 1.4.2.1
Factor 3 out of 6.
123453(2)8063Z⋅26=64
Step 1.4.2.2
Factor 3 out of 63Z.
123453(2)803(21Z)⋅26=64
Step 1.4.2.3
Cancel the common factor.
123453⋅2803(21Z)⋅26=64
Step 1.4.2.4
Rewrite the expression.
1234528021Z⋅26=64
1234528021Z⋅26=64
Step 1.4.3
Combine 2 and 8021Z.
123452⋅8021Z⋅26=64
Step 1.4.4
Multiply 2 by 80.
1234516021Z⋅26=64
1234516021Z⋅26=64
Step 1.5
Simplify the denominator.
Step 1.5.1
Multiply the numerator by the reciprocal of the denominator.
1234521Z160⋅26=64
Step 1.5.2
Cancel the common factor of 5.
Step 1.5.2.1
Factor 5 out of 160.
1234521Z5(32)⋅26=64
Step 1.5.2.2
Cancel the common factor.
1234521Z5⋅32⋅26=64
Step 1.5.2.3
Rewrite the expression.
123421Z32⋅26=64
123421Z32⋅26=64
123421Z32⋅26=64
Step 1.6
Simplify the denominator.
Step 1.6.1
Multiply the numerator by the reciprocal of the denominator.
12343221Z⋅26=64
Step 1.6.2
Multiply 43221Z.
Step 1.6.2.1
Combine 4 and 3221Z.
1234⋅3221Z⋅26=64
Step 1.6.2.2
Multiply 4 by 32.
12312821Z⋅26=64
12312821Z⋅26=64
12312821Z⋅26=64
Step 1.7
Simplify the denominator.
Step 1.7.1
Multiply the numerator by the reciprocal of the denominator.
12321Z128⋅26=64
Step 1.7.2
Multiply 321Z128.
Step 1.7.2.1
Combine 3 and 21Z128.
123(21Z)128⋅26=64
Step 1.7.2.2
Multiply 21 by 3.
1263Z128⋅26=64
1263Z128⋅26=64
1263Z128⋅26=64
Step 1.8
Simplify the denominator.
Step 1.8.1
Multiply the numerator by the reciprocal of the denominator.
1212863Z⋅26=64
Step 1.8.2
Multiply 212863Z.
Step 1.8.2.1
Combine 2 and 12863Z.
12⋅12863Z⋅26=64
Step 1.8.2.2
Multiply 2 by 128.
125663Z⋅26=64
125663Z⋅26=64
125663Z⋅26=64
Step 1.9
Multiply the numerator by the reciprocal of the denominator.
163Z256⋅26=64
Step 1.10
Multiply 63Z256 by 1.
63Z256⋅26=64
Step 1.11
Cancel the common factor of 2.
Step 1.11.1
Factor 2 out of 256.
63Z2(128)⋅26=64
Step 1.11.2
Factor 2 out of 26.
63Z2⋅128⋅(2⋅13)=64
Step 1.11.3
Cancel the common factor.
63Z2⋅128⋅(2⋅13)=64
Step 1.11.4
Rewrite the expression.
63Z128⋅13=64
63Z128⋅13=64
Step 1.12
Combine 63Z128 and 13.
63Z⋅13128=64
Step 1.13
Multiply 13 by 63.
819Z128=64
819Z128=64
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
128,1
Step 2.2
The LCM of one and any expression is the expression.
128
128
Step 3
Step 3.1
Multiply each term in 819Z128=64 by 128.
819Z128⋅128=64⋅128
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of 128.
Step 3.2.1.1
Cancel the common factor.
819Z128⋅128=64⋅128
Step 3.2.1.2
Rewrite the expression.
819Z=64⋅128
819Z=64⋅128
819Z=64⋅128
Step 3.3
Simplify the right side.
Step 3.3.1
Multiply 64 by 128.
819Z=8192
819Z=8192
819Z=8192
Step 4
Step 4.1
Divide each term in 819Z=8192 by 819.
819Z819=8192819
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of 819.
Step 4.2.1.1
Cancel the common factor.
819Z819=8192819
Step 4.2.1.2
Divide Z by 1.
Z=8192819
Z=8192819
Z=8192819
Z=8192819
Step 5
The result can be shown in multiple forms.
Exact Form:
Z=8192819
Decimal Form:
Z=10.00244200…
Mixed Number Form:
Z=102819