Basic Math Examples

Solve for m -0.0314ms^-1=( square root of F)/( square root of 1.3(10^-4)kgm^-1)
-0.0314ms-1=F1.3(10-4)kgm-10.0314ms1=F1.3(104)kgm1
Step 1
Rewrite the equation as F1.3(10-4)kgm-1=-0.0314ms-1.
F1.3(10-4)kgm-1=-0.0314ms-1
Step 2
Cross multiply.
Tap for more steps...
Step 2.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
-0.0314ms-11.3(10-4)kgm-1=F
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify -0.0314ms-11.3(10-4)kgm-1.
Tap for more steps...
Step 2.2.1.1
Rewrite the expression using the negative exponent rule b-n=1bn.
-0.0314ms-11.3(10-4)kg1m=F
Step 2.2.1.2
Combine 1.3(10-4)kg and 1m.
-0.0314ms-11.3(10-4)kgm=F
Step 2.2.1.3
Rewrite 1.3(10-4)kgm as 1.3(10-4)kgm.
-0.0314ms-11.3(10-4)kgm=F
Step 2.2.1.4
Multiply 1.3(10-4)kgm by mm.
-0.0314ms-1(1.3(10-4)kgmmm)=F
Step 2.2.1.5
Combine and simplify the denominator.
Tap for more steps...
Step 2.2.1.5.1
Multiply 1.3(10-4)kgm by mm.
-0.0314ms-11.3(10-4)kgmmm=F
Step 2.2.1.5.2
Raise m to the power of 1.
-0.0314ms-11.3(10-4)kgmm1m=F
Step 2.2.1.5.3
Raise m to the power of 1.
-0.0314ms-11.3(10-4)kgmm1m1=F
Step 2.2.1.5.4
Use the power rule aman=am+n to combine exponents.
-0.0314ms-11.3(10-4)kgmm1+1=F
Step 2.2.1.5.5
Add 1 and 1.
-0.0314ms-11.3(10-4)kgmm2=F
Step 2.2.1.5.6
Rewrite m2 as m.
Tap for more steps...
Step 2.2.1.5.6.1
Use nax=axn to rewrite m as m12.
-0.0314ms-11.3(10-4)kgm(m12)2=F
Step 2.2.1.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
-0.0314ms-11.3(10-4)kgmm122=F
Step 2.2.1.5.6.3
Combine 12 and 2.
-0.0314ms-11.3(10-4)kgmm22=F
Step 2.2.1.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.1.5.6.4.1
Cancel the common factor.
-0.0314ms-11.3(10-4)kgmm22=F
Step 2.2.1.5.6.4.2
Rewrite the expression.
-0.0314ms-11.3(10-4)kgmm1=F
-0.0314ms-11.3(10-4)kgmm1=F
Step 2.2.1.5.6.5
Simplify.
-0.0314ms-11.3(10-4)kgmm=F
-0.0314ms-11.3(10-4)kgmm=F
-0.0314ms-11.3(10-4)kgmm=F
Step 2.2.1.6
Combine using the product rule for radicals.
-0.0314ms-11.3(10-4)kgmm=F
Step 2.2.1.7
Combine -0.0314ms-1 and 1.3(10-4)kgmm.
-0.0314ms-11.3(10-4)kgmm=F
-0.0314ms-11.3(10-4)kgmm=F
-0.0314ms-11.3(10-4)kgmm=F
-0.0314ms-11.3(10-4)kgmm=F
Step 3
Solve for -0.0314ms-11.3(10-4)kgm.
Tap for more steps...
Step 3.1
Multiply both sides by m.
-0.0314ms-11.3(10-4)kgmmm=Fm
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of m.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
-0.0314ms-11.3(10-4)kgmmm=Fm
Step 3.2.1.2
Rewrite the expression.
-0.0314ms-11.3(10-4)kgm=Fm
-0.0314ms-11.3(10-4)kgm=Fm
-0.0314ms-11.3(10-4)kgm=Fm
-0.0314ms-11.3(10-4)kgm=Fm
Step 4
To remove the radical on the left side of the equation, square both sides of the equation.
(-0.0314ms-11.3(10-4)kgm)2=(Fm)2
Step 5
Simplify each side of the equation.
Tap for more steps...
Step 5.1
Use nax=axn to rewrite 1.3(10-4)kgm as (1.3(10-4)kgm)12.
(-0.0314ms-1(1.3(10-4)kgm)12)2=(Fm)2
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Simplify (-0.0314ms-1(1.3(10-4)kgm)12)2.
Tap for more steps...
Step 5.2.1.1
Apply the product rule to 1.3(10-4)kgm.
(-0.0314ms-1((1.3(10-4)kg)12m12))2=(Fm)2
Step 5.2.1.2
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.2.1.2.1
Apply the product rule to -0.0314ms-1(1.3(10-4)kg)12m12.
(-0.0314ms-1(1.3(10-4)kg)12)2(m12)2=(Fm)2
Step 5.2.1.2.2
Apply the product rule to -0.0314ms-1(1.3(10-4)kg)12.
(-0.0314ms-1)2((1.3(10-4)kg)12)2(m12)2=(Fm)2
(-0.0314ms-1)2((1.3(10-4)kg)12)2(m12)2=(Fm)2
Step 5.2.1.3
Multiply the exponents in ((1.3(10-4)kg)12)2.
Tap for more steps...
Step 5.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
(-0.0314ms-1)2(1.3(10-4)kg)122(m12)2=(Fm)2
Step 5.2.1.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.2.1.3.2.1
Cancel the common factor.
(-0.0314ms-1)2(1.3(10-4)kg)122(m12)2=(Fm)2
Step 5.2.1.3.2.2
Rewrite the expression.
(-0.0314ms-1)2(1.3(10-4)kg)1(m12)2=(Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)1(m12)2=(Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)1(m12)2=(Fm)2
Step 5.2.1.4
Simplify.
(-0.0314ms-1)2(1.3(10-4)kg)(m12)2=(Fm)2
Step 5.2.1.5
Multiply the exponents in (m12)2.
Tap for more steps...
Step 5.2.1.5.1
Apply the power rule and multiply exponents, (am)n=amn.
(-0.0314ms-1)2(1.3(10-4)kg)m122=(Fm)2
Step 5.2.1.5.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.2.1.5.2.1
Cancel the common factor.
(-0.0314ms-1)2(1.3(10-4)kg)m122=(Fm)2
Step 5.2.1.5.2.2
Rewrite the expression.
(-0.0314ms-1)2(1.3(10-4)kg)m1=(Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m1=(Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m1=(Fm)2
Step 5.2.1.6
Simplify.
(-0.0314ms-1)2(1.3(10-4)kg)m=(Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m=(Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m=(Fm)2
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Simplify (Fm)2.
Tap for more steps...
Step 5.3.1.1
Apply the product rule to Fm.
(-0.0314ms-1)2(1.3(10-4)kg)m=F2m2
Step 5.3.1.2
Rewrite F2 as F.
Tap for more steps...
Step 5.3.1.2.1
Use nax=axn to rewrite F as F12.
(-0.0314ms-1)2(1.3(10-4)kg)m=(F12)2m2
Step 5.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
(-0.0314ms-1)2(1.3(10-4)kg)m=F122m2
Step 5.3.1.2.3
Combine 12 and 2.
(-0.0314ms-1)2(1.3(10-4)kg)m=F22m2
Step 5.3.1.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.1.2.4.1
Cancel the common factor.
(-0.0314ms-1)2(1.3(10-4)kg)m=F22m2
Step 5.3.1.2.4.2
Rewrite the expression.
(-0.0314ms-1)2(1.3(10-4)kg)m=F1m2
(-0.0314ms-1)2(1.3(10-4)kg)m=F1m2
Step 5.3.1.2.5
Simplify.
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
Step 6
Solve for m.
Tap for more steps...
Step 6.1
Subtract Fm2 from both sides of the equation.
(-0.0314ms-1)2(1.3(10-4)kg)m-Fm2=0
Step 6.2
Factor m out of (-0.0314ms-1)2(1.3(10-4)kg)m-Fm2.
Tap for more steps...
Step 6.2.1
Factor m out of (-0.0314ms-1)2(1.3(10-4)kg)m.
m((-0.0314ms-1)2(1.3(10-4)kg))-Fm2=0
Step 6.2.2
Factor m out of -Fm2.
m((-0.0314ms-1)2(1.3(10-4)kg))+m(-Fm)=0
Step 6.2.3
Factor m out of m((-0.0314ms-1)2(1.3(10-4)kg))+m(-Fm).
m((-0.0314ms-1)2(1.3(10-4)kg)-Fm)=0
m((-0.0314ms-1)2(1.3(10-4)kg)-Fm)=0
Step 6.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
m=0
(-0.0314ms-1)2(1.3(10-4)kg)-Fm=0
Step 6.4
Set m equal to 0.
m=0
Step 6.5
Set (-0.0314ms-1)2(1.3(10-4)kg)-Fm equal to 0 and solve for m.
Tap for more steps...
Step 6.5.1
Set (-0.0314ms-1)2(1.3(10-4)kg)-Fm equal to 0.
(-0.0314ms-1)2(1.3(10-4)kg)-Fm=0
Step 6.5.2
Solve (-0.0314ms-1)2(1.3(10-4)kg)-Fm=0 for m.
Tap for more steps...
Step 6.5.2.1
Subtract (-0.0314ms-1)2(1.3(10-4)kg) from both sides of the equation.
-Fm=-(-0.0314ms-1)2(1.3(10-4)kg)
Step 6.5.2.2
Divide each term in -Fm=-(-0.0314ms-1)2(1.3(10-4)kg) by -F and simplify.
Tap for more steps...
Step 6.5.2.2.1
Divide each term in -Fm=-(-0.0314ms-1)2(1.3(10-4)kg) by -F.
-Fm-F=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 6.5.2.2.2.1
Dividing two negative values results in a positive value.
FmF=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.2.2
Cancel the common factor of F.
Tap for more steps...
Step 6.5.2.2.2.2.1
Cancel the common factor.
FmF=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.2.2.2
Divide m by 1.
m=-(-0.0314ms-1)2(1.3(10-4)kg)-F
m=-(-0.0314ms-1)2(1.3(10-4)kg)-F
m=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.3
Simplify the right side.
Tap for more steps...
Step 6.5.2.2.3.1
Dividing two negative values results in a positive value.
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
Step 6.6
The final solution is all the values that make m((-0.0314ms-1)2(1.3(10-4)kg)-Fm)=0 true.
m=0,(-0.0314ms-1)2(1.3(10-4)kg)F
m=0,(-0.0314ms-1)2(1.3(10-4)kg)F
Step 7
Simplify m=0,(-0.0314ms-1)2(1.3(10-4)kg)F.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Apply the product rule to -0.0314ms-1.
m=0,(-0.0314)2(ms-1)21.310-4kgF
Step 7.1.2
Multiply 1.3 by (-0.0314)2.
m=0,0.00128174(ms-1)210-4kgF
Step 7.1.3
Multiply the exponents in (ms-1)2.
Tap for more steps...
Step 7.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
m=0,0.00128174ms-1210-4kgF
Step 7.1.3.2
Multiply -1 by 2.
m=0,0.00128174ms-210-4kgF
m=0,0.00128174ms-210-4kgF
Step 7.1.4
Rewrite the expression using the negative exponent rule b-n=1bn.
m=0,0.001281741ms210-4kgF
Step 7.1.5
Rewrite the expression using the negative exponent rule b-n=1bn.
m=0,0.001281741ms21104kgF
Step 7.1.6
Raise 10 to the power of 4.
m=0,0.001281741ms2110000kgF
Step 7.1.7
Combine exponents.
Tap for more steps...
Step 7.1.7.1
Combine 110000 and 0.00128174.
m=0,0.00128174100001ms2kgF
Step 7.1.7.2
Combine kg and 1ms2.
m=0,0.0012817410000kgms2F
m=0,0.0012817410000kgms2F
Step 7.1.8
Divide 0.00128174 by 10000.
m=0,0.00000012kgms2F
m=0,0.00000012kgms2F
Step 7.2
Factor kgms2 out of 0.00000012kgms2F.
m=0,kgms20.00000012F
Step 7.3
Combine fractions.
m=0,0.00000012Fkgms2
m=0,0.00000012Fkgms2
 [x2  12  π  xdx ]