Enter a problem...
Basic Math Examples
-0.0314ms-1=√F√1.3(10-4)kgm-1−0.0314ms−1=√F√1.3(10−4)kgm−1
Step 1
Rewrite the equation as √F√1.3(10-4)kgm-1=-0.0314ms-1.
√F√1.3(10-4)kgm-1=-0.0314ms-1
Step 2
Step 2.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
-0.0314ms-1⋅√1.3(10-4)kgm-1=√F
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify -0.0314ms-1⋅√1.3(10-4)kgm-1.
Step 2.2.1.1
Rewrite the expression using the negative exponent rule b-n=1bn.
-0.0314ms-1⋅√1.3(10-4)kg1m=√F
Step 2.2.1.2
Combine 1.3(10-4)kg and 1m.
-0.0314ms-1⋅√1.3(10-4)kgm=√F
Step 2.2.1.3
Rewrite √1.3(10-4)kgm as √1.3(10-4)kg√m.
-0.0314ms-1⋅√1.3(10-4)kg√m=√F
Step 2.2.1.4
Multiply √1.3(10-4)kg√m by √m√m.
-0.0314ms-1⋅(√1.3(10-4)kg√m⋅√m√m)=√F
Step 2.2.1.5
Combine and simplify the denominator.
Step 2.2.1.5.1
Multiply √1.3(10-4)kg√m by √m√m.
-0.0314ms-1⋅√1.3(10-4)kg√m√m√m=√F
Step 2.2.1.5.2
Raise √m to the power of 1.
-0.0314ms-1⋅√1.3(10-4)kg√m√m1√m=√F
Step 2.2.1.5.3
Raise √m to the power of 1.
-0.0314ms-1⋅√1.3(10-4)kg√m√m1√m1=√F
Step 2.2.1.5.4
Use the power rule aman=am+n to combine exponents.
-0.0314ms-1⋅√1.3(10-4)kg√m√m1+1=√F
Step 2.2.1.5.5
Add 1 and 1.
-0.0314ms-1⋅√1.3(10-4)kg√m√m2=√F
Step 2.2.1.5.6
Rewrite √m2 as m.
Step 2.2.1.5.6.1
Use n√ax=axn to rewrite √m as m12.
-0.0314ms-1⋅√1.3(10-4)kg√m(m12)2=√F
Step 2.2.1.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
-0.0314ms-1⋅√1.3(10-4)kg√mm12⋅2=√F
Step 2.2.1.5.6.3
Combine 12 and 2.
-0.0314ms-1⋅√1.3(10-4)kg√mm22=√F
Step 2.2.1.5.6.4
Cancel the common factor of 2.
Step 2.2.1.5.6.4.1
Cancel the common factor.
-0.0314ms-1⋅√1.3(10-4)kg√mm22=√F
Step 2.2.1.5.6.4.2
Rewrite the expression.
-0.0314ms-1⋅√1.3(10-4)kg√mm1=√F
-0.0314ms-1⋅√1.3(10-4)kg√mm1=√F
Step 2.2.1.5.6.5
Simplify.
-0.0314ms-1⋅√1.3(10-4)kg√mm=√F
-0.0314ms-1⋅√1.3(10-4)kg√mm=√F
-0.0314ms-1⋅√1.3(10-4)kg√mm=√F
Step 2.2.1.6
Combine using the product rule for radicals.
-0.0314ms-1⋅√1.3(10-4)kgmm=√F
Step 2.2.1.7
Combine -0.0314ms-1 and √1.3(10-4)kgmm.
-0.0314ms-1√1.3(10-4)kgmm=√F
-0.0314ms-1√1.3(10-4)kgmm=√F
-0.0314ms-1√1.3(10-4)kgmm=√F
-0.0314ms-1√1.3(10-4)kgmm=√F
Step 3
Step 3.1
Multiply both sides by m.
-0.0314ms-1√1.3(10-4)kgmmm=√Fm
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of m.
Step 3.2.1.1
Cancel the common factor.
-0.0314ms-1√1.3(10-4)kgmmm=√Fm
Step 3.2.1.2
Rewrite the expression.
-0.0314ms-1√1.3(10-4)kgm=√Fm
-0.0314ms-1√1.3(10-4)kgm=√Fm
-0.0314ms-1√1.3(10-4)kgm=√Fm
-0.0314ms-1√1.3(10-4)kgm=√Fm
Step 4
To remove the radical on the left side of the equation, square both sides of the equation.
(-0.0314ms-1√1.3(10-4)kgm)2=(√Fm)2
Step 5
Step 5.1
Use n√ax=axn to rewrite √1.3(10-4)kgm as (1.3(10-4)kgm)12.
(-0.0314ms-1(1.3(10-4)kgm)12)2=(√Fm)2
Step 5.2
Simplify the left side.
Step 5.2.1
Simplify (-0.0314ms-1(1.3(10-4)kgm)12)2.
Step 5.2.1.1
Apply the product rule to 1.3(10-4)kgm.
(-0.0314ms-1((1.3(10-4)kg)12m12))2=(√Fm)2
Step 5.2.1.2
Use the power rule (ab)n=anbn to distribute the exponent.
Step 5.2.1.2.1
Apply the product rule to -0.0314ms-1(1.3(10-4)kg)12m12.
(-0.0314ms-1(1.3(10-4)kg)12)2(m12)2=(√Fm)2
Step 5.2.1.2.2
Apply the product rule to -0.0314ms-1(1.3(10-4)kg)12.
(-0.0314ms-1)2((1.3(10-4)kg)12)2(m12)2=(√Fm)2
(-0.0314ms-1)2((1.3(10-4)kg)12)2(m12)2=(√Fm)2
Step 5.2.1.3
Multiply the exponents in ((1.3(10-4)kg)12)2.
Step 5.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
(-0.0314ms-1)2(1.3(10-4)kg)12⋅2(m12)2=(√Fm)2
Step 5.2.1.3.2
Cancel the common factor of 2.
Step 5.2.1.3.2.1
Cancel the common factor.
(-0.0314ms-1)2(1.3(10-4)kg)12⋅2(m12)2=(√Fm)2
Step 5.2.1.3.2.2
Rewrite the expression.
(-0.0314ms-1)2(1.3(10-4)kg)1(m12)2=(√Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)1(m12)2=(√Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)1(m12)2=(√Fm)2
Step 5.2.1.4
Simplify.
(-0.0314ms-1)2(1.3(10-4)kg)(m12)2=(√Fm)2
Step 5.2.1.5
Multiply the exponents in (m12)2.
Step 5.2.1.5.1
Apply the power rule and multiply exponents, (am)n=amn.
(-0.0314ms-1)2(1.3(10-4)kg)m12⋅2=(√Fm)2
Step 5.2.1.5.2
Cancel the common factor of 2.
Step 5.2.1.5.2.1
Cancel the common factor.
(-0.0314ms-1)2(1.3(10-4)kg)m12⋅2=(√Fm)2
Step 5.2.1.5.2.2
Rewrite the expression.
(-0.0314ms-1)2(1.3(10-4)kg)m1=(√Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m1=(√Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m1=(√Fm)2
Step 5.2.1.6
Simplify.
(-0.0314ms-1)2(1.3(10-4)kg)m=(√Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m=(√Fm)2
(-0.0314ms-1)2(1.3(10-4)kg)m=(√Fm)2
Step 5.3
Simplify the right side.
Step 5.3.1
Simplify (√Fm)2.
Step 5.3.1.1
Apply the product rule to √Fm.
(-0.0314ms-1)2(1.3(10-4)kg)m=√F2m2
Step 5.3.1.2
Rewrite √F2 as F.
Step 5.3.1.2.1
Use n√ax=axn to rewrite √F as F12.
(-0.0314ms-1)2(1.3(10-4)kg)m=(F12)2m2
Step 5.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
(-0.0314ms-1)2(1.3(10-4)kg)m=F12⋅2m2
Step 5.3.1.2.3
Combine 12 and 2.
(-0.0314ms-1)2(1.3(10-4)kg)m=F22m2
Step 5.3.1.2.4
Cancel the common factor of 2.
Step 5.3.1.2.4.1
Cancel the common factor.
(-0.0314ms-1)2(1.3(10-4)kg)m=F22m2
Step 5.3.1.2.4.2
Rewrite the expression.
(-0.0314ms-1)2(1.3(10-4)kg)m=F1m2
(-0.0314ms-1)2(1.3(10-4)kg)m=F1m2
Step 5.3.1.2.5
Simplify.
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
(-0.0314ms-1)2(1.3(10-4)kg)m=Fm2
Step 6
Step 6.1
Subtract Fm2 from both sides of the equation.
(-0.0314ms-1)2(1.3(10-4)kg)m-Fm2=0
Step 6.2
Factor m out of (-0.0314ms-1)2(1.3(10-4)kg)m-Fm2.
Step 6.2.1
Factor m out of (-0.0314ms-1)2(1.3(10-4)kg)m.
m((-0.0314ms-1)2(1.3(10-4)kg))-Fm2=0
Step 6.2.2
Factor m out of -Fm2.
m((-0.0314ms-1)2(1.3(10-4)kg))+m(-Fm)=0
Step 6.2.3
Factor m out of m((-0.0314ms-1)2(1.3(10-4)kg))+m(-Fm).
m((-0.0314ms-1)2(1.3(10-4)kg)-Fm)=0
m((-0.0314ms-1)2(1.3(10-4)kg)-Fm)=0
Step 6.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
m=0
(-0.0314ms-1)2(1.3(10-4)kg)-Fm=0
Step 6.4
Set m equal to 0.
m=0
Step 6.5
Set (-0.0314ms-1)2(1.3(10-4)kg)-Fm equal to 0 and solve for m.
Step 6.5.1
Set (-0.0314ms-1)2(1.3(10-4)kg)-Fm equal to 0.
(-0.0314ms-1)2(1.3(10-4)kg)-Fm=0
Step 6.5.2
Solve (-0.0314ms-1)2(1.3(10-4)kg)-Fm=0 for m.
Step 6.5.2.1
Subtract (-0.0314ms-1)2(1.3(10-4)kg) from both sides of the equation.
-Fm=-(-0.0314ms-1)2(1.3(10-4)kg)
Step 6.5.2.2
Divide each term in -Fm=-(-0.0314ms-1)2(1.3(10-4)kg) by -F and simplify.
Step 6.5.2.2.1
Divide each term in -Fm=-(-0.0314ms-1)2(1.3(10-4)kg) by -F.
-Fm-F=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.2
Simplify the left side.
Step 6.5.2.2.2.1
Dividing two negative values results in a positive value.
FmF=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.2.2
Cancel the common factor of F.
Step 6.5.2.2.2.2.1
Cancel the common factor.
FmF=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.2.2.2
Divide m by 1.
m=-(-0.0314ms-1)2(1.3(10-4)kg)-F
m=-(-0.0314ms-1)2(1.3(10-4)kg)-F
m=-(-0.0314ms-1)2(1.3(10-4)kg)-F
Step 6.5.2.2.3
Simplify the right side.
Step 6.5.2.2.3.1
Dividing two negative values results in a positive value.
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
m=(-0.0314ms-1)2(1.3(10-4)kg)F
Step 6.6
The final solution is all the values that make m((-0.0314ms-1)2(1.3(10-4)kg)-Fm)=0 true.
m=0,(-0.0314ms-1)2(1.3(10-4)kg)F
m=0,(-0.0314ms-1)2(1.3(10-4)kg)F
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Apply the product rule to -0.0314ms-1.
m=0,(-0.0314)2(ms-1)2⋅1.3⋅10-4kgF
Step 7.1.2
Multiply 1.3 by (-0.0314)2.
m=0,0.00128174(ms-1)2⋅10-4kgF
Step 7.1.3
Multiply the exponents in (ms-1)2.
Step 7.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
m=0,0.00128174ms-1⋅2⋅10-4kgF
Step 7.1.3.2
Multiply -1 by 2.
m=0,0.00128174ms-2⋅10-4kgF
m=0,0.00128174ms-2⋅10-4kgF
Step 7.1.4
Rewrite the expression using the negative exponent rule b-n=1bn.
m=0,0.001281741ms2⋅10-4kgF
Step 7.1.5
Rewrite the expression using the negative exponent rule b-n=1bn.
m=0,0.001281741ms2⋅1104kgF
Step 7.1.6
Raise 10 to the power of 4.
m=0,0.001281741ms2⋅110000kgF
Step 7.1.7
Combine exponents.
Step 7.1.7.1
Combine 110000 and 0.00128174.
m=0,0.00128174100001ms2kgF
Step 7.1.7.2
Combine kg and 1ms2.
m=0,0.0012817410000kgms2F
m=0,0.0012817410000kgms2F
Step 7.1.8
Divide 0.00128174 by 10000.
m=0,0.00000012kgms2F
m=0,0.00000012kgms2F
Step 7.2
Factor kgms2 out of 0.00000012kgms2F.
m=0,kgms2⋅0.00000012F
Step 7.3
Combine fractions.
m=0,0.00000012Fkgms2
m=0,0.00000012Fkgms2