Basic Math Examples

Solve for m (m*40)/(m-40)*(form)=101
m40m-40(form)=101m40m40(form)=101
Step 1
Factor each term.
Tap for more steps...
Step 1.1
Multiply m40m-40m40m40 by formform.
m40m-40(form)=101m40m40(form)=101
Step 1.2
Combine ff and m40m-40m40m40.
f(m40)m-40(orm)=101f(m40)m40(orm)=101
Step 1.3
Combine oo and f(m40)m-40f(m40)m40.
o(f(m40))m-40(rm)=101o(f(m40))m40(rm)=101
Step 1.4
Combine rr and o(f(m40))m-40o(f(m40))m40.
r(o(f(m40)))m-40m=101r(o(f(m40)))m40m=101
Step 1.5
Combine r(o(f(m40)))m-40r(o(f(m40)))m40 and mm.
r(o(f(m40)))mm-40=101r(o(f(m40)))mm40=101
Step 1.6
Raise mm to the power of 11.
r(o(f(40)))(m1m)m-40=101r(o(f(40)))(m1m)m40=101
Step 1.7
Raise m to the power of 1.
r(o(f(40)))(m1m1)m-40=101
Step 1.8
Use the power rule aman=am+n to combine exponents.
r(o(f(40)))m1+1m-40=101
Step 1.9
Add 1 and 1.
r(o(f(40)))m2m-40=101
Step 1.10
Remove parentheses.
r(of40)m2m-40=101
Step 1.11
Remove parentheses.
r(of)40m2m-40=101
Step 1.12
Remove parentheses.
rof40m2m-40=101
rof40m2m-40=101
Step 2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
m-40,1
Step 2.2
Remove parentheses.
m-40,1
Step 2.3
The LCM of one and any expression is the expression.
m-40
m-40
Step 3
Multiply each term in rof40m2m-40=101 by m-40 to eliminate the fractions.
Tap for more steps...
Step 3.1
Multiply each term in rof40m2m-40=101 by m-40.
rof40m2m-40(m-40)=101(m-40)
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of m-40.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
rof40m2m-40(m-40)=101(m-40)
Step 3.2.1.2
Rewrite the expression.
rof40m2=101(m-40)
rof40m2=101(m-40)
Step 3.2.2
Move 40 to the left of rof.
40rofm2=101(m-40)
40rofm2=101(m-40)
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Apply the distributive property.
40rofm2=101m+101-40
Step 3.3.2
Multiply 101 by -40.
40rofm2=101m-4040
40rofm2=101m-4040
40rofm2=101m-4040
Step 4
Solve the equation.
Tap for more steps...
Step 4.1
Subtract 101m from both sides of the equation.
40rofm2-101m=-4040
Step 4.2
Add 4040 to both sides of the equation.
40rofm2-101m+4040=0
Step 4.3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.4
Substitute the values a=40rof, b=-101, and c=4040 into the quadratic formula and solve for m.
101±(-101)2-4(40rof4040)2(40rof)
Step 4.5
Simplify.
Tap for more steps...
Step 4.5.1
Simplify the numerator.
Tap for more steps...
Step 4.5.1.1
Raise -101 to the power of 2.
m=101±10201-4(40rof)40402(40rof)
Step 4.5.1.2
Multiply -4 by 40.
m=101±10201-160rof40402(40rof)
Step 4.5.1.3
Multiply 4040 by -160.
m=101±10201-646400rof2(40rof)
Step 4.5.1.4
Factor 101 out of 10201-646400rof.
Tap for more steps...
Step 4.5.1.4.1
Factor 101 out of 10201.
m=101±101(101)-646400rof2(40rof)
Step 4.5.1.4.2
Factor 101 out of -646400rof.
m=101±101(101)+101(-6400rof)2(40rof)
Step 4.5.1.4.3
Factor 101 out of 101(101)+101(-6400rof).
m=101±101(101-6400rof)2(40rof)
m=101±101(101-6400rof)2(40rof)
m=101±101(101-6400rof)2(40rof)
Step 4.5.2
Multiply 2 by 40.
m=101±101(101-6400rof)80rof
m=101±101(101-6400rof)80rof
Step 4.6
The final answer is the combination of both solutions.
m=101+101(101-6400rof)80rof
m=101-101(101-6400rof)80rof
m=101+101(101-6400rof)80rof
m=101-101(101-6400rof)80rof
Enter a problem...
 [x2  12  π  xdx ]