Enter a problem...
Basic Math Examples
m⋅40m-40⋅(form)=101m⋅40m−40⋅(form)=101
Step 1
Step 1.1
Multiply m⋅40m-40m⋅40m−40 by formform.
m⋅40m-40(form)=101m⋅40m−40(form)=101
Step 1.2
Combine ff and m⋅40m-40m⋅40m−40.
f(m⋅40)m-40(orm)=101f(m⋅40)m−40(orm)=101
Step 1.3
Combine oo and f(m⋅40)m-40f(m⋅40)m−40.
o(f(m⋅40))m-40(rm)=101o(f(m⋅40))m−40(rm)=101
Step 1.4
Combine rr and o(f(m⋅40))m-40o(f(m⋅40))m−40.
r(o(f(m⋅40)))m-40m=101r(o(f(m⋅40)))m−40m=101
Step 1.5
Combine r(o(f(m⋅40)))m-40r(o(f(m⋅40)))m−40 and mm.
r(o(f(m⋅40)))mm-40=101r(o(f(m⋅40)))mm−40=101
Step 1.6
Raise mm to the power of 11.
r(o(f⋅(40)))(m1m)m-40=101r(o(f⋅(40)))(m1m)m−40=101
Step 1.7
Raise m to the power of 1.
r(o(f⋅(40)))(m1m1)m-40=101
Step 1.8
Use the power rule aman=am+n to combine exponents.
r(o(f⋅(40)))m1+1m-40=101
Step 1.9
Add 1 and 1.
r(o(f⋅(40)))m2m-40=101
Step 1.10
Remove parentheses.
r(of⋅40)m2m-40=101
Step 1.11
Remove parentheses.
r(of)⋅40m2m-40=101
Step 1.12
Remove parentheses.
rof⋅40m2m-40=101
rof⋅40m2m-40=101
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
m-40,1
Step 2.2
Remove parentheses.
m-40,1
Step 2.3
The LCM of one and any expression is the expression.
m-40
m-40
Step 3
Step 3.1
Multiply each term in rof⋅40m2m-40=101 by m-40.
rof⋅40m2m-40(m-40)=101(m-40)
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of m-40.
Step 3.2.1.1
Cancel the common factor.
rof⋅40m2m-40(m-40)=101(m-40)
Step 3.2.1.2
Rewrite the expression.
rof⋅40m2=101(m-40)
rof⋅40m2=101(m-40)
Step 3.2.2
Move 40 to the left of rof.
40rofm2=101(m-40)
40rofm2=101(m-40)
Step 3.3
Simplify the right side.
Step 3.3.1
Apply the distributive property.
40rofm2=101m+101⋅-40
Step 3.3.2
Multiply 101 by -40.
40rofm2=101m-4040
40rofm2=101m-4040
40rofm2=101m-4040
Step 4
Step 4.1
Subtract 101m from both sides of the equation.
40rofm2-101m=-4040
Step 4.2
Add 4040 to both sides of the equation.
40rofm2-101m+4040=0
Step 4.3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4.4
Substitute the values a=40rof, b=-101, and c=4040 into the quadratic formula and solve for m.
101±√(-101)2-4⋅(40rof⋅4040)2(40rof)
Step 4.5
Simplify.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
Raise -101 to the power of 2.
m=101±√10201-4⋅(40rof)⋅40402⋅(40rof)
Step 4.5.1.2
Multiply -4 by 40.
m=101±√10201-160rof⋅40402⋅(40rof)
Step 4.5.1.3
Multiply 4040 by -160.
m=101±√10201-646400rof2⋅(40rof)
Step 4.5.1.4
Factor 101 out of 10201-646400rof.
Step 4.5.1.4.1
Factor 101 out of 10201.
m=101±√101(101)-646400rof2⋅(40rof)
Step 4.5.1.4.2
Factor 101 out of -646400rof.
m=101±√101(101)+101(-6400rof)2⋅(40rof)
Step 4.5.1.4.3
Factor 101 out of 101(101)+101(-6400rof).
m=101±√101(101-6400rof)2⋅(40rof)
m=101±√101(101-6400rof)2⋅(40rof)
m=101±√101(101-6400rof)2⋅(40rof)
Step 4.5.2
Multiply 2 by 40.
m=101±√101(101-6400rof)80rof
m=101±√101(101-6400rof)80rof
Step 4.6
The final answer is the combination of both solutions.
m=101+√101(101-6400rof)80rof
m=101-√101(101-6400rof)80rof
m=101+√101(101-6400rof)80rof
m=101-√101(101-6400rof)80rof